跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/16 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:連培中
研究生(外文):Hiah, Pier Juhng
論文名稱:慢性疼痛心電圖生理訊號資料串流深勘技術:即時追踪與疼痛臨床關聯
論文名稱(外文):Data Stream Mining Technology for ECG Signals of Chronic Pain: Real-Time Tracking and Clinical Correlation
指導教授:林進燈林進燈引用關係
指導教授(外文):Lin, Chin-Teng
口試委員:王署君林進燈莊鈞翔金榮泰
口試委員(外文):Wang, Shuu-JiunLin, Chin-TengChuang, Chun-HsiangKing, Jung-Tai
口試日期:2017-01-18
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機資訊國際學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:63
中文關鍵詞:心率變異性慢性疼痛實時流式傳輸和分析
外文關鍵詞:Heart Rate Variability (HRV)Chronic PainReal-time Streaming and Analyzing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
疼痛是一種主觀經驗,只能通過自我報告來做衡量。因此,評估及追踪慢性疼痛治療的進展是具有挑戰性的。心電圖(ECG)已被證明是個有潛力的慢性疼痛生理標誌物。在過去,有研究證明心率變異性(HRV)與不同類型的疼痛以及疼痛感覺有相互關係。為了識別出HRV指數與慢性疼痛之間的關係,本研究收集了治療前後慢性偏頭痛和纖維肌痛患者在靜息狀態下的心電圖數據及主觀疼痛嚴重程度。此外,健康受試者的靜息ECG數據也被收錄以進行對照比較。根據時間,頻率和非線性分析的結果顯示,慢性疼痛患者的HRV通常低於健康對照受試者的HRV。此外,在治療有效組中發現慢性疼痛患者的HRV在治療後有顯著地增加,表明了HRV在治療效果上是個有效的生物標誌物。在10個HRV指數中,非線性龐加萊圖分析 (Poincaré plot analysis) 是監測疼痛嚴重性以及判斷治療效果表現最好的HRV指數。最後,本研究同時也開發了用於實時流式傳輸和分析多模態數據的數據流挖掘平台。未來,該平台可以用作於輔助慢性疼痛生物反饋的治療。
Evaluating and tracking the progress of treatment for chronic pain is challenging because pain is a subjective experience and can be measured only by self-report. Electrocardiography (ECG) has been proven to be a promising source of physiological biomarkers for chronic pain. Previous studies had demonstrated that heart rate variability (HRV) could be associated with different types of pain and also pain perception. This study aims to identify the relationship between HRV indices and chronic pain through collecting resting ECG data and subjective pain severity from patients with chronic migraine and fibromyalgia before and after treatments. In addition, resting ECG data from healthy controls were also collected for comparison. The results derived from time, frequency, and non-linear analyses showed that the HRV of chronic patients were generally lower than that of healthy control subjects. Besides, the HRV of the chronic pain patients in the responder group significantly increased after the medical treatment, indicating that a useful biomarker of the treatment efficacy. Among 10 HRV indices, the non-linear Poincaré plot analysis is a promising HRV indices in monitoring pain severity as well as determining treatment efficacy. Finally, a data stream mining platform was developed for real-time streaming and analyzing of multimodal data. This platform is presented such that they can be used as an aid for biofeedback treatment of chronic pain in the future.
Chinese Abstract ........................................................................................................................ i
English Abstract ....................................................................................................................... ii
Acknowledgement ...................................................................................................................... iii
Table of Contents ....................................................................................................................... iv
List of Tables ...................................................................................................................... vii
List of Figures ..................................................................................................................... viii
I. INTRODUCTION .................................................................................................................... 1
1.1 Chronic Pain: Chronic Migraine and Fibromyalgia ......................................................... 1
1.2 Heart Rate Variability (HRV) and its Relation with Pain Perception .............................. 2
1.3 Aim of the Study ............................................................................................................... 4
II. MATERIALS AND METHODS ......................................................................................... 6
2.1 Chronic Pain Patients ........................................................................................................ 6
2.2 Clinical Experiment .......................................................................................................... 7
2.2.1 Data Acquisition ........................................................................................................ 8
2.2.2 Experiment Protocol .................................................................................................. 9
2.2.3 Treatment and its Efficacy ....................................................................................... 10
2.3 ECG Data Processing and Analysis ................................................................................ 11
2.3.1 QRS Complex Detection ......................................................................................... 11
v
2.3.2 Time Domain Analysis ............................................................................................ 12
2.3.3 Frequency Domain Analysis ................................................................................... 13
2.3.4 Nonlinear Analysis .................................................................................................. 14
2.3.5 HRVAS Toolbox ..................................................................................................... 15
2.4 Statistical Analysis .......................................................................................................... 18
III. MULTIMODAL DATA STREAM MINING PLATFORM ............................................. 19
3.1 Framework of Data Streaming and Mining Interface ..................................................... 19
3.2 Core Components of Data Streaming and Mining Platform ........................................... 21
3.3 Real-time ECG Data Processing ..................................................................................... 27
IV. RESULTS ....................................................................................................................... 29
4.1 Distribution of Patient ..................................................................................................... 29
4.2 Distribution of Pain Score ............................................................................................... 30
4.3 ECG correlates of Pain Score ......................................................................................... 30
4.4 Treatment Efficacy ......................................................................................................... 37
4.4.1 Changes of pain score .............................................................................................. 37
4.4.2 Changes of HRV ...................................................................................................... 40
V. DISCUSSION ..................................................................................................................... 48
5.1 Studying of Individual’s HRV in Poincaré Plot Analysis .............................................. 48
5.2 Promising HRV Indices for Future Applications in Monitoring Pain Severity .............. 52
5.3 Development of Multimodal Data Stream Mining Platform and Its Challenges............ 53
vi
5.4 Limitations ...................................................................................................................... 55
VI. CONCLUSION .................................................................................................................. 57
6.1 Summary ....................................................................................................................... 57
6.2 Future Works .................................................................................................................. 58
REFERENCES ....................................................................................................................... 59
APPENDIX 1 ....................................................................................................................... 64
APPENDIX 2 ....................................................................................................................... 67
[1]
"Chronic Pain; Symptoms, Diagnosis, & Treatment | NIH MedlinePlus the Magazine," 2011. [Online]. Available: https://medlineplus.gov/magazine/issues/spring11/articles/spring11pg5-6.html. [Accessed 31 August 2016].
[2]
"The International Classification of Headache Disorders, 3rd edition (beta version)," Cephalalgia, vol. 33, no. 9, pp. 629-808, 2013.
[3]
J. L. Natoli, et al., "Global prevalence of chronic migraine: a systematic review," Cephalalgia, vol. 31, pp. 1116-1130, 2009.
[4]
J. Jones, et al., "Intramuscular prochlorperazine versus metoclopramide as single-agent therapy for the treatment of acute migraine headache," Am J Emerg Med, vol. 14, no. 3, pp. 262-4, 1996.
[5]
M. A. Kabbouche, et al., "Tolerability and effectiveness of prochlorperazine for intractable migraine in children," Pediatrics, vol. 107, no. 4, p. E62, 2011.
[6]
G. Larkin, "Intravenous ketorolac vs intravenous prochlorperazine for the treatment of migraine headaches," Acad Emerg Med, vol. 6, no. 6, pp. 668-670, 1999.
[7]
M. B. Seim, et al., "Intravenous ketorolac vs intravenous prochlorperazine for the treatment of migraine headaches," Acad Emerg Med, vol. 5, no. 6, pp. 573-576, 1998.
[8]
P. T. Weir, et al., "The incidence of fibromyalgia and its associated comorbidities: a population-based retrospective cohort study based on International Classification of Diseases, 9th Revision codes," J Clin Rheumatol, vol. 12, no. 3, pp. 124-128, 2006.
[9]
F. Wolfe, et al., "The prevalence and characteristics of fibromyalgia in the general population," Arthritis Rheum, vol. 38, pp. 19-28, 1995.
[10]
D. L. Hoffman and E. M. Dukes, "The health status burden of people with fibromyalgia: a review of studies that assessed health status with the SF-36 or the SF-12," Int J Clin Pract, vol. 62, pp. 115-126, 2008.
[11]
H. Liu, et al., "Suicide risk in patients with migraine and comorbid fibromyalgia," Neurology, vol. 85, no. 12, pp. 1017-1023, 2015.
[12]
R. F. Schmidt and G. Thews, "Autonomic Nervous System," in In Janig, W. Human Physiology (2nd ed.), New York, NY, Springer-Verlag, 1989, p. 333–370.
60
[13]
G. Berntson, et al., "Heart rate variability: Origins, methods, and interpretive caveats," Psychophysiology, vol. 34, pp. 623-648, 1997.
[14]
M. Malik, et al., "Task force of the European Society of Cardiology and The North American Society of Pacing and Electrophysiology. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use.," Eur Heart J, vol. 17, pp. 354-381, 1996.
[15]
G. C. Casolo, et al., "Heart rate variability during the acute phase of myocardial infarction," Circulation, vol. 85, no. 6, p. 2073–2079, 1992.
[16]
F. Lombardi, et al., "Heart rate variability as an index of sympathovagal interaction after myocardial infarction," Am J Cardiol, vol. 60, p. 1239–1245, 1987.
[17]
F. Lombardi, et al., "Circadian variation of spectral indices of heart rate variability after myocardial infarction," Am Heart J, vol. 123, p. 1521–1529, 1992.
[18]
J. T. Jr. Bigger, et al., "Frequency domain measures of heart period variability and mortality after myocardial infarction," Circulation, vol. 85, p. 164–171, 1992.
[19]
G. Casolo, et al., "Decreased spontaneous heart rate variability on congestive heart failure," Am J Cardiol, vol. 64, p. 1162–1167, 1989.
[20]
J. Nolan, et al., "Decreased cardiac parasympathetic activity in chronic heart failure and its relation to left ventricular function," Br Heart J, vol. 69, p. 761–767, 1992.
[21]
M. G. Kienzle, et al., "Clinical hemodynamic and sympathetic neural correlates of heart rate variability in congestive heart failure," Am J Cardiol, vol. 69, p. 482–485, 1992.
[22]
D. Hallman, "Autonomic nervous system regulation in chronic neck-shoulder pain: Relations to physical activity and perceived stress," Acta Universitatis Upsaliensis, Doctoral Dissertation, 2013.
[23]
T. Schlereth and F. Birklein, "The sympathetic nervous system and pain," Neuromol Med, vol. 10, pp. 141-147, 2008.
[24]
R. Logier, et al., "Pain/analgesia evaluation using heart rate variability analysis," in Conf Proc IEEE Eng Med Biol Soc, New York City, 2006.
[25]
P. B. Corr, K. A. Yamada and F. X. Witkowski, "Mechanisms controlling cardiac autonomic function and their relation to arrhythmogenesis," in The Heart and Cardiovascular System, New York, Raven Press, 1986, p. 1343–1403.
[26]
M. N. Levy and P. J. Schwartz, Vagal control of the heart: Experimental basis and clinical implications, Armonk: Futura Pub. Co., 1994.
61
[27]
J. Sztajzel, "Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system," Swiss Med Wkly, vol. 134, p. 514–522, 2004.
[28]
J. Koenig, et al., "Chronic pain and heart rate variability in a cross-sectional occupational sample: evidence for impaired vagal control," Clin J Pain, vol. 32, no. 3, pp. 218-225, 2016.
[29]
B. M. Appelhans and L. J. Luecken, "Heart rate variability and pain: associations of two interrelated homeostatic processes," Biol. Psychol., vol. 77, p. 174–182, 2008.
[30]
R. J. Storella, et al., "Relief of chronic pain may be accompanied by an increase in a measure of heart rate variability," Anesth Analg, vol. 89, no. 2, p. 448–450, 1999.
[31]
A. Shechter, et al., "Migraine and autonomic nervous system function: A population-based, case control study," Neurology, vol. 58, pp. 422-427, 2002.
[32]
M. Tabata, et al., "Cosinor analysis of heart rate variability in ambulatory migraineurs," Headache, vol. 40, pp. 457-463, 2000.
[33]
R. Staud, "Heart rate variability as a biomarker of fibromyalgia syndrome," Future Rheumatology, vol. 3, no. 5, pp. 475-483, 2008.
[34]
S. M. Mostoufi, et al., "Health and distress predictors of heart rate variability in fibromyalgia and other forms of chronic pain," J Psychosom Res., vol. 72, pp. 39-44, 2012.
[35]
J. Piskorski and P. Guzik, "Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adults," Physiol Meas, vol. 28, pp. 287-300, 2007.
[36]
K. Saranya, et al., "Analysis of Poincare plot of heart rate variability in the assessment of autonomic dysfunction in patients with polycystic ovary syndrome," International Journal of Clinical and Experimental Physiology, vol. 2, no. 1, pp. 34-39, 2015.
[37]
C. Hsu, et al., "Poincaré plot indexes of heart rate variability detect dynamic autonomic modulation during general anesthesia induction," Acta Anaesthesiol. Taiwan, vol. 50, pp. 12-18, 2012.
[38]
P. Guzik, et al., "Heart rate variability by Poincaré plot and spectral analysis in young healthy subjects and patients with type 1 diabetes," Folia Cardiol, vol. 12, pp. 64-67, 2005.
[39]
H. C. Diener, "CGRP as a new target in prevention and treatment of migraine," Lancet Neurol, vol. 13, no. 11, pp. 1065-1067, 2014.
[40]
A. Bar-Or, et al., "BioStream: a system architecture for real-time processing of physiological signals," Technical report, Hewlett-Packard Labs, 2004.
62
[41]
M. E. Berry, et al., "Non-pharmacological intervention for chronic pain in veterans: a pilot study of heart rate variability biofeedback," Glob Adv Health Med., vol. 3, p. 28–33, 2014.
[42]
F. Wolfe, et al., "Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia," J Rheumatol, vol. 38, no. 6, pp. 1113-1122, 2011.
[43]
J. T. Farrar, et al., "Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale," PAIN, vol. 94, no. 2, pp. 149-158, 2001.
[44]
W. K. Amery, "Flunarizine, a Calcium Channel Blocker: a New Prophylactic Drug in Migraine," Headache: The Journal of Head and Face Pain, vol. 23, p. 70–74, 1983.
[45]
D. K. Baidya, et al., "Pregabalin in Acute and Chronic Pain," Journal of Anaesthesiology, Clinical Pharmacology, vol. 27, no. 3, p. 307–314, 2011.
[46]
A. Delorme and S. Makeig, "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis," Journal of Neuroscience Methods, vol. 134, pp. 9-21, 2004.
[47]
J. Pan and W. J. Tompkins, "A Real-Time QRS Detection Algorithm," IEEE Transactions on Biomedical Engineering, Vols. BME-32, no. 3, 1985.
[48]
R. L. Burr, "Interpretation of normalized spectral heart rate variability indices in sleep research: a critical review," Sleep, vol. 30, no. 7, pp. 913-919, 2007.
[49]
M. P. Tulppo, et al., "Quantitative beat-to-beat analysis of heart rate dynamics during exercise," Am J Physiol, vol. 271, pp. H244-H252, 1996.
[50]
J. T. Ramshur, "Design, evaluation, and application of heart rate variability analysis software (HRVAS)," The University of Memphis, Master Thesis, 2010.
[51]
A. Ojeda, et al., "MoBILAB: an open source toolbox for analysis and visualization of mobile brain/body imaging data," Frontiers in human neuroscience, vol. 8, pp. 1-9, 2014.
[52]
H. Sedghamiz, "File Exchange - MATLAB Central : Complete Pan Tompkins Implementation ECG QRS detector," 11 3 2014. [Online]. Available: https://www.mathworks.com/matlabcentral/fileexchange/45840-complete-pan-tompkins-implementation-ecg-qrs-detector/content/pan_tompkin.m. [Accessed 18 5 2016].
[53]
P. W. Kamen and A. M. Tonkin, "Application of the Poincaré plot to heart rate variability: A new measure of functional status in heart failure," Aust. NZ J. Med, vol. 25, pp. 18-26, 1995.
63
[54]
M. W. Agelink, et al., "Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate," Clinical Autonomic Research, vol. 11, pp. 99-108, 2001.
[55]
A. Bonnet, et al., "Electrodermal activity in low back pain patients with and without co-morbid depression," Int J Psychophysiol, vol. 53, no. 1, pp. 37-44, 2004.
[56]
H. Storm, "The capability of skin conductance to monitor pain compared to other physiological pain assessment tools in children and neonates," Pediatric and Therapeutiic, vol. 3, no. 168, pp. 1-5, 2013.
[57]
A. C. Wilson, et al., "Physical activity and function in adolescents with chronic pain: a controlled study using actigraphy," J Pain, vol. 13, no. 2, pp. 121-130, 2012.
[58]
V. Segura-Jimenez, et al., "Agreement between self-reported sleep patterns and actigraphy in fibromyalgia and healthy women," Clin Exp Rheumatol, vol. 33, pp. 58-67, 2015.
[59]
Schneider S., et al., "Individual differences in the day-to-day variability of pain, fatigue, and well-being in patients with rheumatic disease: Associations with psychological variables," Pain, vol. 153, no. 4, pp. 813-822, 2012.
[60]
P. M. Lehrer, E. Vaschillo, B. Vaschillo, "Resonant frequency biofeedback training to increase cardiac variability: rationale and manual for training," Appl. Psychophyisol. Biofeedback, vol. 25, p. 177–191, 2000.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top