|
1. Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astron. J. 1977; vol. 8(12):1013-1024. 2. Libersky LD and Petschek AG. Calculation of oblique impact and fracture of tungsten cubes using smoothed particle hydrodynamics. International Journal of Impact Engineering 1995; vol. 17:661. 3. Lancaster P and Salkauskas K. Surfaces Generated by Moving Least Squares Method. Mathematics of Computation 1981; vol. 37:141-158. 4. Nayroles B, Touzot G, Villon P. Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Element. Computational mechanics 1992; vol. 10:307-318. 5. Belytschko T, Lu YY and Gu L. Element-free Galerkin Method. International Journal for Numerical Methods in Engineering 1994; vol. 37:229-256. 6. Chen JS, Pan C, Wu CT and Liu WK. Reproducing Kernel Particle Method for Large Deformation Analysis of non-linear structures. Computer methods in applied mechanics and engineering 1996; vol. 139:195-227. 7. 盛若磐. 元素釋放法積分法則與權函數之改良. 近代工程計算論壇(2000)論文集,國立中央大學土木系,2000. 8. Mendonca P de TR, Barcellos CS de, Duarte A. Investigation on the hp-Method by solving Timoshenko beam problems. Computer Mechanics 2000; vol. 25:286-395. 9. Belytschko T, Krongauz Y, Flemming M, Organ D and Liu WK. Smoothing and Accelerated Computations in the Element free Galerkin Method. Journal of Computational and Applied Mechanics 1996; vol. 74:111-126. 10. Modaressi H and Aubert P. A Diffuse Element-Finite Element Technique for Transient Coupled Anlysis. International Journal for Numerical Methods in Engineering 1996; vol. 39:3809-3838. 11. Bobaru F and Mukherjee S. Shape Sensitivity Analysis and Shape Optimization in Planar Elasticity Using the Element-free Galerkin Method. Computer methods in applied mechanics and engineering 2001; vol. 190:4319-4337. 12. Belytschko T, Organ D and Krongauz Y. A coupled finite element-element-free Galerkin method. Computer Mechanics 1995; vol. 17:186-195. 13. Flemming M, Chu YA, Moran AB and Belytschko T. Enriched element-free Galerkin methods for crack-tip field. Int. J. Number. Methods Engrg. 1997; vol. 40:1483-1504. 14. Rosolen A, Mill´an D, Arroyo M. On the optimum support size in meshfree methods: A variational adaptivity approach with maximum-entropy approximants. Int. J. Numer. Method Engrg. 2009; vol. 82:868-895. 15. Gu YT, Liu GR. Meshless techniques for convection dominated problems. Comput. Mech. 2006; vol. 38:171-182. 16. Netuzhylov H, Zilian A. Space-time meshfree collocation method: methodology and application to initial value problems. Int. J. Numer. Method Engrg. 2009; vol. 80:355-380. 17. Zhang XH, Ouyang J, Wang JY. Stabilization meshless method for convection- dominated problems. Appl. Math. Mech. 2008; vol. 29:1067–1075. 18. Tu W, Gu YT, Wen PH. Effective shear modulus approach for two dimensional solids and plate bending problems by meshless point collocation method. Engrg. Anal. Boundary Elem. 2012; vol. 36:675–684. 19. Ooi EH, Popov V. An efficient implementation of the radial basis integral equation method. Engrg. Anal. Boundary Elem. 2012; vol. 36:716–726. 20. Wu XH, Chang ZJ, Lu YL, Tao WQ, Shen SP. An analysis of the convection- diffusion problems using meshless and meshbased methods. Engrg. Anal. Boundary Elem. 2012; vol. 36:1040–1048. 21. Han W, Meng X. Error analysis of the reproducing kernel particle method. Comput. Methods Appl. Mech. Engrg. 2001; vol. 190:6157-6181. 22. Cheng RJ, Cheng YM. Error estimates for the finite point method. Appl. Numer. Math. 2008; vol. 58:884-898. 23. Hu HY, Chen JS, Hu W. Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods for Partial Differ. Equ. 2009; DOI 10.1002/num 554-580. 24. Cheng RJ, Cheng YM. Error estimate of element-free Galerkin method for elasticity. Acta Phys. Sin. 2011; vol. 60:070206-1~070206-6. 25. Zhuang X, Heaney C, Augarde C. On error control in the element-free Galerkin method. Engrg. Anal. Boundary Elem. 2012; vol. 36:351–360. 26. Jin X, Li G, Aluru NR. Positivity conditions in meshless collocation methods. Comput. Methods Appl. Mech. Engrg. 2004; vol. 193:1171–1202. 27. Liu WK, Han W, Lu H, Li S, Cao J. Reproducing kernel element method. Part I: Theoretical formulation. Comput. Methods Appl. Mech. Engrg. 2004; vol. 193:933–951. 28. Liu GR, Gu YT. An introduction to meshfree methods and their programming. New York: Springer 2005. 29. Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. Int. J. Numer. Methods Fluids 1995; vol. 20:1081-1106. 30. Jin X, Li G, Aluru NR. On the equivalence between least-squares and kernel approximations in meshless methods. CMES 2001; vol. 2:447-462. 31. Singha IV. Parallel implementation of the EFG method for heat transfer and fluid flow problems. Comput. Mech. 2004; vol. 34:453-463. 32. Singha IV, Jainb PK. Parallel EFG algorithm for heat transfer problems. Adv. Engrg. Softw 2005; vol. 36:554-560. 33. Singha IV, Jainb PK. Parallel meshless EFG solution for fluid flow problems. Numer. Heat Transfer B 2005; vol. 48:45-66. 34. Danielson KT, Hao S, Liu WK, Aziz R, Li S. Parallel computation of meshless methods for explicit dynamic analysis. Int. J. Numer. Method Engrg. 2000; vol. 47:1323-1341. 35. Danielson KT, Adley MD. A meshless treatment of three-dimensional penetrator targets for parallel computation. Comput. Mech. 2000; vol. 25:267-273. 36. Danielson KT, Uras RA, Adley MD, Li S. Large-scale application of some modern CSM methodologies by parallel computation. Adv. Engrg. Softw. 2000; vol. 31:501-509. 37. Cartwright C, Oliveira S, Stewart DE. Parallel support set searches for meshfree methods. SIAM J. Sci. Comput. 2006; vol. 28:1318-1334. 38. Nakata S. Parallel meshfree computation for parabolic equations on graphics hardware. Int. J. Comput. Math. 2011; vol. 88:1909-1919. 39. Nakata S, Takeda Y, Fujita N, Ikuno S. Parallel algorithm for meshfree radial point interpolation method on graphics hardware. IEEE Trans. Magn. 2011; vol. 47:1206-1209. 40. Zhang LT, Wagner GJ, Liu WK. A Parallelized Meshfree Method with Boundary Enrichment for Large-Scale CFD. J. Comput. Phy. 2002; vol. 176:483-506. 41. Zhang LT, Wagner GJ, Liu WK. Modelling and simulation of fluid structure interaction by meshfree and FEM. Commun. Numer. Methods Engrg. 2003; vol. 19:615-621. 42. Wang H, Li G, Han X, Zhong ZH. Parallel point interpolation method for three-dimensional metal forming simulations. Engrg. Anal. Boundary Elem. 2007; vol. 31:326-342. 43. Wang H, Li G, Han X, Zhong ZH. Development of parallel 3D RKPM meshless bulk forming simulation system. Adv. Engrg. Softw 2007; vol. 38:87-101. 44. Trobec R, Sterk M, Robic B, Belytschko T. Computational complexity and parallelization of the meshless local Petrov-Galerkin method. Comput. and Struct. 2009; vol. 87:81-90. 45. Ventura1 G, Xu JX, Belytschko T. A vector level set method and new discontinuity approximations for crack growth by EFG. International Journal for Numerical Methods in Engineering 2002; vol. 54:923–944. 46. Lee SH, Yoon YC. An improved crack analysis technique by element-free Galerkin method with auxiliary supports. International Journal for Numerical Methods in Engineering 2003; vol. 56:1291-1314. 47. Marc D, Hung ND. A meshless method with enriched weight functions for fatigue crack growth. International Journal for Numerical Methods in Engineering 2004; vol. 59:1945–1961. 48. Thomas M. A natural neighbour-based moving least-squares approach for the element-free Galerkin method. International Journal for Numerical Methods in Engineering 2007; vol. 71:224–252. 49. Hildebrand G. Fracture analysis using an enriched meshless method. Meccanica 2009; vol. 44:535–545. 50. Gu YT. An enriched radial point interpolation Method Based on Weak-Form and Strong-Form. Mechanics of Advanced Materials and Structures 2011; vol. 18:578–584. 51. Zhuang X, Augarde1 Charles, Bordas Stéphane. Accurate fracture modelling using meshless methods, the visibility criterion and level sets: Formulation and 2D modeling. International Journal for Numerical Methods in Engineering 2011; vol. 86:249–268. 52. Zhu H, Zhuang X, Cai Y. High rock slope stability analysis using the enriched meshless shepard and least squares method. International Journal of Computational Methods 2011; vol. 8(2):209–228. 53. Gu YT, Wanga W, Zhang LC, Feng XQ. An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Engineering Fracture Mechanics 2011; vol. 78:175–190. 54. Singh IV, Mishra BK, Mohit P. An enrichment based new criterion for the simulation of multiple interacting cracks using element free Galerkin method. Int J Fract 2011; vol. 167:157–171. 55. Rao BN, Rahman S. An enriched meshless method for non-linear fracture mechanics. International Journal for Numerical Methods in Engineering 2004; vol. 59:197–223. 56. Wen PH, Aliabadi MH. A variational approach for evaluation of stress intensity factors using the element free Galerkin method. International Journal of Solids and Structures 2011; vol. 48:1171–1179. 57. Zhang H. Simulation of crack growth using cohesive crack method. Applied Mathematical Modelling 2010; vol. 34:2508–2519. 58. Ettore B, Michele M. A meshless cohesive Segments Method for Crack Initiation and propagation in composites. Appl Compos Mater 2011; vol. 18:45–63. 59. Barbieri1 E, Petrinic1 N, Meo M, Tagarielli VL. A new weight-function enrichment in meshless methods for multiple cracks in linear elasticity. International Journal for Numerical Methods in Engineering 2012; vol. 90:177–195. 60. Wang H, Li L, Liu S. Phenomenological method for fracture. Meccanica 2012; vol. 47:163–173. 61. Liew KM, Cheng Y, Kitipornchai S. Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems. International Journal for Numerical Methods in Engineering 2006; vol. 65:1310–1332. 62. Abdollahifar A, Nami MR, Shafiei AR. A new MLPG method for elastostatic problems. Engineering Analysis with Boundary Elements 2012; vol. 36:451–457. 63. Rajesh KN, Rao BN. Two-dimensional analysis of anisotropic crack problems using coupled meshless and fractal finite element method. Int J Fract 2010; vol. 164:285–318. 64. Mohit P, Singh IV, Mishra BK. Evaluation of mixed mode stress intensity factors for interface cracks using EFGM. Applied Mathematical Modelling 2011; vol. 35:3443–3459. 65. Hegen D. Element-free Galerkin methods in combination with finite element approaches. Comput. Methods Appl. Mech. Engrg. 1996; vol. 135:143-146. 66. Rao BN, Rahman S. A coupled meshless-finite element method for fracture analysis of cracks. International Journal of Pressure Vessel and Piping 2001; vol. 78:647-657. 67. Xiao QZ, Dhanasekara M. Coupling of FE and EFG using collocation approach. Advances in Engineering Software 2002; vol. 33:507–515. 68. Gu YT, Zhang LC. Coupling of the meshfree and finite element methods for determination of the crack tip fields. Engineering Fracture Mechanics 2008; vol. 75:986–1004. 69. Rajesh KN, Rao BN. Coupled meshfree and fractal finite element method for mixed mode two-dimensional crack problems. International Journal for Numerical Methods in Engineering 2010; vol. 84:572–609. 70. Luo H, Zhu HP, Miao Y, Chen CY. Simulation of top-down crack propagation in asphalt pavements. J Zhejiang Univ-Sci A (Appl Phys & Eng) 2010 ; vol. 11(3):223-230. 71. Krysl P, Belytschko T. The element free galerkin method for dynamic propagation of arbitrary 3-D cracks. International Journal for Numerical Methods in Engineering 1999; vol. 44:767-800. 72. Marc D. A meshless method with enriched weight functions for three-dimensional crack propagation. International Journal for Numerical Methods in Engineering 2006; vol. 65:1970–2006. 73. Yagawa Genki. Computational performance of Free Mesh Method applied to continuum mechanics problems. Proc. Jpn. Acad. 2011; Ser. B 87. 74. Portela A, Aliabadi MH, Rooke DP. Efficient boundary element analysis of sharp notched plates. International Journal for Numerical Methods in Engineering 1991; vol. 32: 445-470. 75. Ping XC, Chen MC, Xie J-L. Singular stress analyses of V-notched anisotropic plates based on a novel finite element method. Engineering Fracture Mechanics 2008; vol. 75:3819–3838. 76. Treifi M, Oyadiji SO, Tsang DKL. Computations of the stress intensity factors of double-edge and centre V-notched plates under tension and anti-plane shear by the fractal-like finite element method. Engineering Fracture Mechanics 2009; vol. 76: 2091-2108. 77. Niu Z, Cheng C, Ye J, Recho N. A new boundary element approach of modeling singular stress fields of plane V-notch problems. International Journal of Solids and Structures 2009; vol. 46:2999–3008. 78. Chen MC, Ping XC. A novel hybrid finite element analysis of inplane singular elastic field around inclusion corners in elastic media. International Journal of Solids and Structures 2009; vol. 46:2527–2538. 79. Passieux JC, Gravouil A, Rethore J, Baietto MC. Direct estimation of generalized stress intensity factors using a three-scale concurrent multigrid X-FEM. International Journal for Numerical Methods in Engineering 2011; vol. 85:1648-1666. 80. Kachanov M and Laures JP. Three-dimensional problems of strongly interacting arbitrarily located penny-shaped cracks. International Journal of Fracture 1989; vol. 41: 289-313. 81. Mear ME, Sevostianov I, Kachanov M. Elastic compliances of non-flat cracks. International Journal of Solids and Structures 2007; vol. 44:6412-6427. 82. Sih GC. A review of the three-dimensional stress problem for a cracked plate. International Journal of Fracture Mechanics 1971; vol. 7(1):39–61. 83. Bercial-Velez JP, Antipov YA, Movchan AB. High-order asymptotics and perturbation problems for 3D interfacial cracks. Journal of the Mechanics and Physics of Solids 2005; vol. 53:1128-1162. 84. Pindra N, Lazarus V, Leblond JB. The deformation of the front of a 3D interface crack propagating quasistatically in a medium with random fracture properties. Journal of the Mechanics and Physics of Solids 2008; vol. 56:1269-1295. 85. She CM, Zhao JH, Guo WL. Three-dimensional stress fields near notches and cracks. International Journal of Fracture 2008; vol. 151:151-160. 86. Chaudhuri RA, Chiu SHJ. Three-dimensional asymptotic stress field in the vicinity of an adhesively bonded scarf joint interface. Composite Structures 2009; vol. 89:475–483. 87. Kotousov A, Berto F, Lazzarin P, Pegorin F. Three dimensional finite element mixed fracture mode under anti-plane loading of a crack. Theoretical and Applied Fracture Mechanics 2012; vol. 62:26–33. 88. Pook LP. A 50-year retrospective review of three-dimensional effects at cracks and sharp notches. Fatigue and Fracture of Engineering Materials and Structures 2013; vol. 36(8):699-723. 89. Kanaun SK. Fast solution of the elasticity problem for a planar crack of arbitrary shape in 3D-anisotropic medium. International Journal of Engineering Science 2009; vol. 47:284-293. 90. Nikishkov GP and Atluri SN. Calculation of fracture mechanics parameters for an arbitrary three-dimensional crack by the equivalent domain integral method. International Journal for Numerical Methods in Engineering 1987; vol. 24:1801-1821. 91. Huber O, Nickel J and Kuhn G. On the decomposition of the J-integral for 3D crack problems. Int. J. of Fracture 1993; vol. 64:339-348. 92. Chessa J, Smolinski P, Belytschko T. The extended finite element method (XFEM) for solidification problems. International Journal for Numerical Methods in Engineering 2002; vol. 53(8):1959-1977. 93. Liang J, Huang R, Prevost JH, Suo Z. Evolving crack patterns in thin films with the extended finite element method. International Journal of Solids and Structures 2003; vol. 40(10):2343-2354. 94. Shen Y and Lew AJ. A locking-free and optimally convergent discontinuous- Galerkin-based extended finite element method for cracked nearly incompressible solids. Computer Methods in Applied Mechanics and Engineering 2014; vol. 273:119-142. 95. Treifi M and Oyadiji SO. Strain energy approach to compute stress intensity factors for isotropic homogeneous and bi-material V-notches. International Journal of Solids and Structures 2013; vol. 50:2196-2212. 96. Tsang DKL, Oyadiji SO, Leung AYT. Applications of numerical eigenfunctions in the fractal-like finite element method. International Journal for Numerical Methods in Engineering 2004; vol. 61(4):475-495. 97. Murotani K, Yagawa G, Choi JB. Adaptive finite elements using hierarchical mesh and its application to crack propagation analysis. Computer Methods in Applied Mechanics and Engineering 2013; vol. 253:1-14. 98. Belytschko T and Tabbara M. Dynamic fracture using element-free galerkin method. International Journal for Numerical Methods in Engineering 1996; vol. 39:923-938. 99. Sun Y, Zhang Z, Kitipornchai S, Liew KM. Analyzing the interaction between collinear interfacial cracks by an efficient boundary element-free method. Int. J. Engrg. Sci. 2006; vol. 44:37-48. 100.Ju SH. OpenMp solvers for parallel finite element and meshless analyses. accepted by Engineering Computations. 101.Ju SH. A simple OpenMP scheme for parallel iteration solvers in finite element analysis. CMES-Computer Modeling in Engineering & Sciences 2010; vol. 64:91-108. 102.Lekhnitskii SG. Theory of elasticity of an anisotropic body. Holden-Day, San Francisco; 1963. 103.Stroh AN. Steady state problems in anisotropic elasticity. Journal of Math. Phys. 1962; vol.41:77-103. 104.Ting TCT. Anisotropic elasticity: theory and application. Oxford University Press, New York; 1996. 105.Williams ML. Stress singularities resulting from various boundary conditions in angular corners of plates in extension. Journal of Applied Mechanics 1952; vol.19:526–528. 106.Ting TCT. Barnett-Lothe tensors and their associated tensors for monockunuc materials with the symmetry plane at x3=0. Journal of Elasticity 1992; vol.27:143-165. 107.Wu KC, Chang FT. Near-tip field in a notched body with dislocations and body forces, ASME Journal of Applied Mechanics 1993; vol.60:936-941. 108.Press WH, Flannery BP, Teukolsky SA, Vettenling WT. Numerical recipes, the art of scientific computing. Cambridge University Press, New York; 1986. 109.Krongauz Y, Belytschko T. Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput. Methods Appl. Mech. Engrg. 1996; vol.131:133-145. 110.Ju SH, Chiu CY, Jhao BJ. Experimental calculation of mixed-mode notch stress intensity factors for anisotropic materials. Engineering Fracture Mechanics 2009; vol.76(14):2260-2271. 111.Ayatollahi MR, Nejati M. Determination of NSIFs and coefficients of higher order terms for sharp notches using finite element method. International Journal of Mechanical Sciences 2011; vol.53:164-177. 112.Ju SH. Finite element calculation of stress intensity factors for interface notches. Computer Methods in Applied Mechanics and Engineering 2010; vol.199(33-36): 2273-2280. 113.Chen DA. Stress intensity factors for V-notched strip under tension or in-plane bending. International Journal of Fracture 1995; vol.70:81-97. 114.Omer N and Yosibash Y. Edge singularities in 3-D elastic anisotropic and multi-material domains. Computer Methods in Applied Mechanics and Engineering 2008; vol.197:959-978. 115.Henshell RD and Shaw KG. Crack tip elements are unnecessary. International Journal for Numerical Methods in Engineering 1975; vol.9:495-509. 116.Ju SH. Simulating stress intensity factors for anisotropic materials by the least-squares method. Int. J. of Fracture 1996; vol.81:283-297.
|