跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 12:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡錦福
研究生(外文):Chin-Fu Tsai
論文名稱:結合多波段紅外線與紫外線輻射檢測技術以預測火災之研究
論文名稱(外文):Study of The Radiometry Combining Multi-band Infrared and Ultraviolet Techniquesfor Forecasting Fires
指導教授:楊明興楊明興引用關係
指導教授(外文):Ming-Shing Young
學位類別:博士
校院名稱:國立成功大學
系所名稱:電機工程學系碩博士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:63
中文關鍵詞:悶燒輻射紫外線紅外線
外文關鍵詞:infraredultravioletsmolderradiation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:535
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:1
摘 要

傳統的火災偵測器因必須充分地接觸目標物(熱或煙霧)而延遲反應。本研究提出了幾個以輻射檢知技術去偵測火的方法。雖然以複合型感測器(multi-sensor)組成的火災警報系統已被發展成為一種自動火災偵測技術。然而,僅有兩三個火的特徵無法充分地辨識火災。本研究採用多波段紅外線與紫外線非接觸性的量測技術,提出一個可以在遠端迅速「監看」物體的溫度變化,以及判定煙火的系統裝置。為了量測物體的溫度,我們在量測系統採用了一種焦電型紅外線(pyroelectric infrared, PIR)感測元件。本報告展示出一個聯結了PIR感測器、光學斬波器(optical chopper)與費涅爾鏡頭(Fresnel lens)的特殊機構。這種可分離式的架構使鏡頭容易被更換而成為可攜式。此外,我們利用校正設備黑體爐(black-body)與一些電子儀表,成功地將這個PIR感測器用在溫度的定量量測上,此量測裝置的視野角約為4.58o以提供長距離的監視功能,實驗結果顯示在整個40~200oC的範圍僅有1.21%的平均誤差。
此外,在此論文提出了四項特徵來分析火的特性:包括溫度、熱的二氧化碳氣體、以及火燄的閃爍度與紫外線能量等。使用四種感測器和一個紅外線轉換器來評估這些特徵。實驗的結果證實:組合兩個PIR感測器去偵測二氧化碳輻射的用法可以避開環境中紅外線的干擾,準確地看到燃燒的表徵。這種新的偵煙方法在系統中被採用以取代傳統煙粒子密度的偵測方式。此外,一項由藍色光感測器與紫外線感測器的組合被有效地用來拾取火燄中紫外線的成份,以協助我們辨識一個乾淨安全的家庭用火。取自這些感測器的資訊透過一個資料擷取卡與LabVIEW軟體呈現在個人電腦上。本研究的成果將為發展新型火災偵測器的設計者提供一個有價值的參考。
ABSTRACT

Conventional fire detectors must contact these targets (heat or smoke) and, consequently, respond slowly. This study proposes several approaches that use the radiation-sensing technologies to detect fire. Although multi-sensor-based fire alarm systems have been developed as automatic fire detection technologies, only two or three fire signatures are insufficient for fires recognition. The study presents a novel system that remotely and accurately monitors the variance in an object’s temperature and identifies fire by applying multi-infrared and ultraviolet measuring techniques. To measure an object’s temperature, this study adopts the pyroelectric infrared (PIR) sensor in the measuring system. This dissertation presents a special mechanism joined with the PIR sensor, optical chopper and Fresnel lens. This separable architecture facilitates easy lens replacement, and is portable. Calibration equipment based on a blackbody (BB) and some electrometers are utilized. The PIR sensor is integrated into a quantitative application for temperature measurement. The measuring device has a 4.58o field of view for remote monitoring. Experimental results indicate that the device only has an average error rate of 1.21% in the overall range of 40 - 200 oC.
The dissertation proposes four fire features for fire analysis: temperature, hot CO2 gas, flicker and the UV energy of the flame. Four sensors and one IR transducer are used to evaluate these characteristics. Experimental results demonstrate that the use of two pyroelectric sensors eliminates the interference from the surroundings and accurately “see” the appearance of combustion by detecting the CO2 emission line. This novel technique for detecting smoke is adopted in system in place of the conventional method for detecting smoke particle density. The combination of a blue and a UV sensor is used effectively to pick up the flame UV component enabling individuals to circumvent a household fire. The information from these sensors is presented on a personal computer using LabVIEW software and a DAQ interface. Results of this study provide a valuable reference for designers in developing novel fire detector.
CONTENTS
Abstract (Chinese) ……………………………………………………… I
Abstract (English) ……………………………………………………… III
Acknowledgement (Chinese) …………………………………………… V
Contents …………………………………………………………………… VI
List of Tables …………………………………………………………… VIII
List of Fiqures ……………………………………………………………IX
Chapter 1. Introduction …………………………………………………1
Chapter 2. Methods ……………………………………………………… 6
2.1 Method of PIR Sensor-based Thermometer ……………………… 6
2.1.1 Radiation principles …………………………………………… 6
2.1.2 The characteristics of the PIR device ………………………8
2.1.3 Experimental structure ………………………………………… 11
2.1.4 Optical systems ……………………………………………………13
2.1.5 Circuit system …………………………………………………… 17
2.2 Technology of identifying fire behavior ………………………21
2.2.1 Fire behavior ………………………………………………………21
2.2.2 Sensors and signal conditioner ……………………………… 23
2.2.2.1 Detection of temperature …………………………………… 24
2.2.2.2 Detection of CO2 gas in hot smoke …………………………25
2.2.2.3 Detecting the flicker (luminosity) of the flame ………30
2.2.2.4 Detecting UV energy in flame ……………………………… 31
2.2.3 Experimental structure ………………………………………… 33
Chapter 3. System Testing and The Results …………………………36
3.1 Test of PIR Sensor-based Thermometer……………………………36
3.1.1 Calibration and Measurement ……………………………………36
3.1.2 The measured results …………………………………………… 37
3.2 Test of the identifying fire system ……………………………40
3.2.1 Measured results ………………………………………………… 40
3.2.2 Deciding rules …………………………………………………… 45
Chapter 4. Discussions ………………………………………………… 49
4.1 Discussion about PIR Sensor-based Thermometer ………………49
4.2 Discussion about the Identifying Fire System ……………… 50
Chapter 5. Conclusions and Future Development ……………………52
References ………………………………………………………………… 54
Appendix A. Photograph of experiment proceeding …………………59
Appendix B. The schematic diagrams of circuits ………………… 61
Vita (Chinese) …………………………………………………………… 63
REFERENCES
[1] P. W. NebiKer & R. E. Pleisch, “Photoacoustic gas detection for fire warning”, Fire Safety Journal 36, p.173-180, 2001
[2] Y. R. Sivathanu & L. K. Tseng, “Fire detection using time series analysis of source temperatures”, Fire safety journal 29, p.301-315, 1997
[3] D. T. Gottuk, M. J. Peatross, R. J. Roby, C. L. Beyler, “Advanced fire detection using multi-signature alarm algorithms”, Fire Safety Journal 37, p.381-394, 2002
[4] Andre Neubauer, “Genetic algorithms in automatic fire detection technology”, Genetic Algorithms in Engineering Systems, IEE Conference, p.180-185, 2-4 Sep. 1997
[5] Ren C. Luo, Kuo L. Su, and Kuo H. Tsai, “Fire detection and isolation for intelligent building system using adaptive sensory fusion method”, Robotics & Automation, IEEE Conference, Washington, DC, p.1777-1781, May 2002
[6] S. Chen, H. Bao, X. Zeng, Y. Yang, Sys., “A fire detection method based on multi-sensor data fusion”, Man and Cyber. IEEE Conference, p. 3775-3780, Oct. 2003
[7] Jorge S. Marques, Pedro M. Jorge, “Visual inspection of a combustion process in a thermoelectric plant”, Signal Processing 80 p. 1577-1589, 2000
[8] J. M. Char & J. H. Yeh, “The measurement of open propane flame temperature using infrared technique”, Radiation Transfer Vol. 56 No. 1, pp. 133-144, 1996
[9] G. Gaussorgues, S. Chomet , “Infrared Thermography” Chapman & Hall, p.18-23, p.62-63, 1994.
[10] W. L. Wolfe & G. J. Zissis, “The infrared handbook” IRIA Center, p. 2-76, 1978
[11] M. F. Ugarte, A. J. de Castro, S. Briz, J. M. Aranda, and F. Lopez, “Automatic and autonomous infrared system for remote sensing of forest fires”, Review of Scientific Instruments Vol.71, No.10, p.3567-3661, Oct. 2000
[12] C. F. Tsai, M. S. Young, “Pyroelectric Infrared Sensor-based Thermometer for Monitoring Indoor Objects”, Review of Scientific Instruments Vol.74 No.12, p.5267-5273, Dec. 2003
[13] Michelangelo Delfino, “Wavelength-Specific Pyrometry as a Temperature Measurement Tool”, IEEE Tranactions on Electron Devices, Vol. 39, No. 1, p. 89-95, January 1992
[14] L. A. Sgro, P. Minutolo, G. Basile, A. D’Alessio, “UV-visible spectroscopy of organic carbon particulate sampled from ethylene/air flames”, Chemosphere 42 p.671-680, 2001
[15] T. M. Hussain, A. M. Baig, T. N. Saadawi, S. A. Ahmed, “Infrared pyroelectric sensor for detection of vehicular traffic using digital signal processing techniques”, IEEE Transactions on Vehicular Technology, v44, n3, p.683-689, 1995.
[16] N. Yoshiike, K. Morinaka, K. Hashimoto, M. Kawaguri, “3600 direction type human information sensor”, Sensors Actuators 77, P.199, 1999.
[17] A. A. de Carvalho, S. Mascarenhas, “Piezo and pyroelectric radiation dosimetry”, IEEE Trans. on Electrical Insulation, v27 n4, 1992
[18] Cascetta, Furio, “Evaluation of the performance of an infrared tympanic thermometer”, Journal of the International Measurement Confederation, v16, n4, p239, Dec. 1995
[19] Ou-Yang, M.; Shie, J. S., “Design and analysis of electrically calibrated tympanic thermometers”, Applied Optics v37 n13, p2708-2715, May 1998
[20] M. K. Anderson, R. T. Sleight, J. L. Torero, “Ignition signatures of a downward smolder reaction”, Experimental Thermal and Fluid Science 21, p.33-40, 2000
[21] IEEE, “Guide for loading mineral-oil-immersed transformers”, IEEE Std. C51.91-1995
[22] E. H. Putley, “Modern infrared detectors”, Physics in Technology, 4, p.202-222 (Dec. 1973)
[23] E. L. Dereniak, D. G. Crowe, “Optical Radiation Detectors”, Wiley, P.9-14, p.171-178, 1984.
[24] G. Baker, D. E. Charlton, P. J. Lock, “High performance pyroelectric detectors”, Radio Electronic Engineers, 42(6), p.260-264, 1972
[25] E. L. Dereniak, G. D. Boreman, “Infrared Detectors and Systems” John Wiley & Sons, p.13, 1996.
[26] J. David Vincent, “ Fundamentals of Infrared Detector”, Wiley, p.138, 1990.
[27] Th. Kraus, M. Baltzer, E. Obermeier, “A micro shutter for applications in optical and thermal detectors”, Int. Conf. on Solid-state sensor and actuators, Chicago, p.67-70, June, 1997
[28] Obertacke, R; Leipertz, A, “A new sensor system for industrial combustion monitoring and control using UV emission spectroscopy and tomography”, Combustion Science and Technology, Vol. 121 No. 1-6 pp. 133-151, Dec. 1996
[29] Sadik Kokac, Yaman Yener, “Convective Heat Transfer”, 2nd Ed., CRC Press, Chapter 10, 1995
[30] A. F. Mills, “Heat transfer”, 2nd, Ed., p.20-22, p.290-295, Prentice-Hall 1999
[31] Frank P. Incropera; David P. Dewitt, “Fundamentals of heat and mass transfer”, p.356, p.534-542, JohnWiley & Sons, 2002
[32] Tohru Nakanishi, Koki Shimohashi, “Development of Dimensionless Correlation for Natural Convection Cooling Board”, IEEE Inter. Society Conference on Thermal Phenomena, p.150-156, 2002
[33] James G. Quintiere, “Principles of Fire Behavior”, Delmar 1998
[34] Geoffrey Cox, “Combustion fundamentals of fire”, Academic Press, p.39-55, p.277-282, 1995
[35] IEEE, “IEEE Guide for Temperature Correlation in the Connection of Insulated Wire and Cables to Electronic Equipment”, Std 55-1953
[36] Monroe Schlessinger, “Infrared Technology Fundamentals 2nd Ed.”, Marcel Dekker, Inc.,Chaper 3 “Infrared Sources”, 1989
[37] B. Willing, M. Kohli, P. Muralt, O. Oehler, “Thin film pyroelectric array as a detector for an infrared gas spectrometer”, Infrared Physics & Technology 39, p. 443-449, 1998
[38] J. de Frutos, A.M. Gonzalez, M.C.Duro, A.J. de Castro, J. Melendez, “New environmental infrared sensors”, Applications of Ferroelectrics, P. 203 – 206, ISAF 98. Proceedings of the Eleventh IEEE International Symposium on 24-27 Aug. 1998
[39] Giorgio Zizak, “Flame Emission Spectroscopy: fundamentals and Applications”, Lecture given at the ICS Training Course, University of Cairo, Egypt, 18-22 Nov., 2000
[40] Jurgen Schilz, “Applications of Thermoelectric Infrared Sensors: Gas Detection by Infrared Absorption; NDIR”, PerkinElmer Optoelectrics, version: 22 Aug. 2000
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top