1.史書華(2008)。網路開店,聽七年級的!,Cheers, 94。2.全球華文行銷知識庫(2008)。張大眼睛看網路購物現況,凱絡媒體週報,461。
3.全球華文行銷知識庫(2009)。2009年企業網站50強和網路公僕20強探討,數位時代,2009年一月刊。
4.何宏儒(2008)。「資策會:台灣經常上網人口1014萬普及率44%」,中央日報網路報,http://www.cdnews.com.tw/cdnews_site/docDetail.jsp? coluid=115& docid=100550218。
5.吳盈宜(2000)。歸納學習法中決策樹連續屬性分割點之選擇,國立成功大學資訊管理研究所碩士論文,。6.陳垂呈、利益多(2002)。應用資料探勘技術發掘最適性之線上拍賣競標者,運籌研究集刊第一期。7.匿名網路作家(2009)。Sonet-停止電子商務平台服務-台灣新的電子商務時代,http://terrylogin.blogspot.com/2009/02/soneet.html。
8.張淑珍、趙景明(2005)。利用一次性的SQL改良決策樹建立信用卡審核之信用評等,東吳大學商學院資訊科學研究所碩士論文。9.辜樹仁(2008)。阿里巴巴台灣開門,天下雜誌,403。
10.電子商務學院(2007)。網站經營:電子商店經營模式官方定義,http://www.web-time.com.tw/details/ec.aspx?id=228。
11.賴士奇、吳嘉哲、劉揚凱、楊子蕙譯,Swift, R. S.著(2000)。深化顧客關係管理,第1版,遠擎管理顧問,臺北。
12.盧昭燕(2009)。女性網購族,救了台灣零售業,天下雜誌,414。
13.顏博文、李維平(2003)。應用資料探勘技術分析學生選課特性與學業表現,中原大學資訊管理學研究所碩士論文。14.Weka官方論壇(2009)。Java語言版開放源代碼數據挖掘軟體,http://www.cs.waikato.ac.nz/ml/weka/,於2009年5月28日擷取。
15.Agrawal, R., Lin, K., Sawhney, H. S., and Shim, K. (1995). Fast Similarity Search in the Presence of Noise, Scaling and Translation in Time-Series Databases, in Proceedings of the 21st International Conference on Very Large Databases, Zurich, Switzerland, 490-501.
16.Aha, D. W., Kibler, D., and Albert, M. K. (1991). Instance-Based Learning Algorithms, Machine Learning, 6, 37-66.
17.Berry, M. J. A., and Linoff, G. S. (2004). Data Mining Techniques for Marketing, Sales, and Customer Support, 2nd ed., New York: John Wiley.
18.Brachman, R. J., Khabaza, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996). Mining Business Databases, Communication of the ACM, 39, 11, 42-48.
19.Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984). Classification and Regression Trees, The Wadsworth Statistics/Probability Series, Belmont, CA, USA.
20.Carbonell, J. G., Yang, Y., Brown, R. D., Pierce, T., Archibald, B. T., and Liu, X. (1999). Learning Approaches for Detecting and Tracking News Event, IEEE Intelligent Systems and Their Applications, 32-43.
21.Cameron-Jones, R. M. (1992). Minimum Description Length Instance-Based Learning, in Proceedings of the 15th Australian Joint Conference on Artificial Intelligence, Hobart, Australia: World Scientific, 368-373.
22.Cheeseman, P., and Stutz, J. (1996). Bayesian Classification (AutoClass): Theory and Results, Advances in Knowledge Discovery and Data Mining, American Association for Artificial Intelligence/The MIT Press, 153-180, CA, USA.
23.Cost, S., and Salzberg, S. (1993). A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features, Machine Learning, 10, 57-78.
24.Kosiur, D. R. (1997). Understanding Electronic Commerce, Microsoft Press, P.4.
25.Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases, AI Magazine, 37-54.
26.Han, J., and Kamber, M. (2006). Data Mining: Concepts and Techniques, 2nd ed., Morgan Kaufmann.
27.Holland, J. H. (1975). Adaptation in Natural and Artificial System, Ann Arbor, MI: University of Michigan Press.
28.Hui, S. C., and Jha, G. (2000). Data Mining for Customer Service Support, Information and Management, Vol. 38:1-13.
29.Kass, G. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data, Applied Statistics, 29, 2, 119-127.
30.Kalakota, R., and Whinston, A. B. (1997). Electronic Commerce: A Manager’s Guide, MA: Addison-Wesley.
31.Laudon, K. C., and Laudon, J. P. (2000). Management Information Systems, 6th ed., Upper Saddle River, NJ: Prentice Hall.
32.Mehta, M., Agrawal, R., and Rissanen, J. (1996). SLIQ: A Fast Scalable Classifier for Data Mining, Proceedings of the 5th International Conference on Extending Database 73 Technology, 18-32, Avignon, France.
33.Michalewicz, Z. (1996). Genetic Algorithm + Data structures= Evolution Programs, 3rd edition, Springer Verlag.
34.Murthy, S. K. (1998). Automatic Construction of Decision Trees from Data: A Multi- Disciplinary Survey, Data Mining and Knowledge Discovery, 2, 4, 345-389.
35.Quinlan, J. R. (1986). Induction of Decision Trees, Machine Learning, 1, 81-106.
36.Quinlan, J. R. (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann, San Francisco, CA, USA.
37.Quinlan, J. R. (1996). Improved Use of Continuous Attributes in C4.5, Journal of Artificial Intelligence Research, 4, 77-90.
38.Ramkumar, G. D., and Swami, A., (1998). Clustering Data without Distance Functions, IEEE Technical Committee on Data Engineering, 9-14.
39.Rastogi, R., and Shim, K. (1998). PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning, Proceedings of the 24th International Conference on Very Large Databases, 404-415, New York, USA.
40.Shafer, J., Agrawal R., and Mehta, M. (1996). SPRINT: A Scalable Parallel Classifier for Data Mining, in Proceedings of the 22nd International Conference on Very Large Databases, Bombay, India, 544-555.
41.Vellido, A., Lisboa, P. J. G. and Vaughan, J. (1999). Neural Networks in Business: A Survey of Applications (1992-1998), Expert Systems with Applications, 17, 51-70.