跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔芸瑩
研究生(外文):Yun-Ying, Kung
論文名稱:人類胎盤型鹼性磷酯啟動區之糖皮質固醇反應序列之研究
論文名稱(外文):Identification and Characterization of Glucocorticoid Response Elements in Human Placental Alkaline Phosphatase Gene Promoter
指導教授:張自忠
指導教授(外文):Tsu-Chung, Chang
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:105
中文關鍵詞:人類胎盤型鹼性磷酯?>人類胎盤型鹼性磷酯?BR>
外文關鍵詞:Human Placental Alkaline PhosphataseGlucocorticoid ReceptorGlucocorticoid Response Element
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人類熱穩定鹼性磷酯包含兩個相關基因所轉錄的同功:胎盤型鹼性磷酯(PAP),特別存在於胎盤組織;生殖細胞型鹼性磷酯(GCAP)主要表現於生殖型細胞中。在人類TMK-1胃癌細胞株中,糖皮質固醇Dexamethasone(Dex)會誘發胎盤型鹼性磷酯活性及mRNA表現,經由mRNA的穩定性及run on轉錄分析,證明Dex在TMK-1細胞誘導鹼性磷酯表現主要是經由增加PAP基因轉錄活性。為了分析研究糖皮質固醇活化之機轉,將胎盤型及生殖細胞型鹼性磷酯啟動區轉殖到螢光表現載體,轉染至TMK-1細胞中,結果顯示, Dex會誘發胎盤型鹼性磷酯啟動區活性約6至10倍,雖然兩者基因啟動區有約86%之相同之核酸序列,但生殖細胞型鹼性磷酯啟動區幾乎不受糖皮質固醇調控。我們確認受Dex調控之胎盤型鹼性磷酯啟動區為-280至-375,將此片段插入含GCAP及CMV基因啟動區與只有TATA box之螢光(luciferase)報告載體中,並共轉染糖皮質固醇表現質體以觀察Dex對其誘導之情形。另外並將PAP啟動區-331至-296刪除片段及GCAP啟動區轉染至四種人類細胞株,觀察Dex對其之誘導情形。經由分析PAP基因啟動區序列發現可能有數個一半的糖皮質固醇反應序列(GRE)存在,分別在-374、-308、-302、-292及+33的位置,為了鑑定這些可能的GRE序列,將PAP啟動區-375至-280不同序列之片段插入只有TATA box之luciferase報告載體,實驗結果顯示任何單一的GRE無法有足夠能力造成糖皮質固醇反應,可能還有其它區域參與。在凝膠位移分析使用老鼠rGR-DBD當蛋白質萃取液,發現只有GREs位置在-374、-302及+33有顯著結合能力。由以上結果證明,在TMK-1細胞中Dex增加PAP基因轉錄活性是藉由GR與PAP基因啟動區上數個不完美之一半GRE的交互作用,此外,在PAP基因啟動區上可能還有其他因子參與Dex對其之專一調控。

Human heat stable alkaline phosphatases are encoded by two closely related genes: the placental alkaline phosphatase (PAP), which specifies the term placental isozyme, and the germ cell alkaline phosphatase GCAP, which is expressed primarily in germ cells. In the human gastric cancer cell line TMK-1 cells, glucocorticoid exhibits an marked induction in the enzyme activity and accumulation of the mRNA of PAP. Analysis of mRNA stability and run on transcription demonstrated that glucocorticoid induction of PAP gene epxression occurs primarily at the level of transcription. In order to study the molecular mechanism underlying the glucocorticoid induction, PAP and GCAP promoters were fused to luciferase gene and transfection were carried out in TMK-1 cells. Dexamethasone confers about 6 to 10 fold of induction in luciferase activity in PAP promoter. Despite that the PAP and GCAP promoters share about 86% in sequence identity, the GCAP promoter directs a very low level of response to dexamethasone. The dexamethasone response region in PAP promoter was identified to be located in between -280 to -375. Insertion of this region into GCAP, CMV promoters, and TATA-luciferase reporter enabled these promoter responsive to dexamethasone when cotransfected with the glucocorticoid receptor (GR) expression plasmid pRS-hGR. Further studies indicated that the region from -296 to -331 is critical for glucocorticoid induction in all four different human cell lines assayed. Sequence analysis of the PAP promoter identified several potential half-glucocorticoid response elements (GRE) at -374, -307, -302, -292, and +33, respectively. In order to identify which of these potential GREs that is required for PAP promoter activity, DNA oligonucleotides encompass various length in between -375 to -280 were inserted into TATA-luciferase reporter. Transfection studies indicated that any one of the half-GREs alone is not enough to confer full glucocortcoid response and other regions may be required in the glucocorticoid-mediated induciton. In gel mobility shift assays using rat GR DNA binding domain (GR-DBD), only the GREs at -374, -302, and +33 were shown to bind GR-DBD efficiently. These results demonstrated that in TMK-1 cells, the increased transcription of PAP gene in the presence of glucocorticoid is mediated in part by interaction of the GR with the imperfect half-GREs in the gene promoter. In addition, other potential elements in PAP promoter may be involved in conferring the full and specific transcription activity mediated by glucocorticoid.

目錄

目 錄…………………………………………….………………Ⅰ
縮 寫 表……………………………………………………………Ⅲ
圖表目錄…………………………………………….…………… Ⅳ
中文摘要………………………………………………………....Ⅵ
英文摘要…………………………………………………………….Ⅶ
緒 論…………………………………………………………….1
材料與方法………………………………………………………….5
一、主要儀器及藥品試劑………………………………..………5
二、小量質體的製備…….………………………….…………....6
三、核酸限制反應 ……………………………………………7
四、DNA片段的回收……………………………………………7
五、DNA連結反應……………………………………………….8
六、勝任細胞的製備………………….…… …..………………..8
七、轉形作用………………………….………….………………9
八、質體的構築……………………….……….…………………9
九、DNA序列的確認………………….…………………………10
十、大量質體的製備………………….………………………….12
十一、細胞培養………………………………….……………….13
十二、細胞轉染………………………………….……………….16
十三、b-galactosidase活性分析…………………………………18
十四、b-galactosidase染色………………………………………19
十五、蛋白質濃度的測定………………………….…………….19
十六、相對的螢光(luciferase)活性分析………..…………20
十七、SDS-聚丙烯醯酸胺電泳及染色………………………….21
十八、從大腸桿菌表現DBD:IPTG誘導、rifampicine處理…24
十九、細菌蛋白質的萃取………………………………………..25
二十、凝膠位移分析(gel shift assay)……………….………..26
結 果…… ………………………………………………………34
一、人類胃癌細胞TMK-1鹼性磷酯,活性表現之探討…34
二、人類TMK-1細胞GCAP及PAP啟動區(promoter)刪除片段報告質體之構築及受Dex誘導轉錄活性序列之探討..34
三、KATO細胞GCAPP及PAPP質體之構築及受Dex誘導轉錄活性序列之探討……….…………………………………36
四、Dex對不同長度PAPP活性序列之探討……………………37
五、PAPP序列的5'端-375至-296 序列之構築……………….37
六、Dex對包含PAPP -375/-280之不同報告載體其轉錄活性之探討……………………………………………………….38
七、PAPP序列的5'端-375至-296 bp刪除片段之構築…………38
八、PAPP -375/-296 bp間GRE之分析.……….…………………39
九、Dex對共轉染糖皮質固醇表現載體(RS-hGR)之各個PAPP載體之活性探討……………………………...………………39
十、在不同細胞中Dex對PAPP-375/-280各刪除片段及GCAPP之誘導轉錄活性之分析..…………………………………….41
十一、PAPP與GCAPP-375/-280間各片段之螢光報告載體之構築載體……………………………….……………….41
十二、Dex對PAPP-375/-280間不同片段的報告載體轉染活性之分析…………………………………….……………….42
十三、以凝膠位移法分析細菌蛋白萃取液…...…………………43
討 論………….…………………………………………………46
結 論………………………………………………………….…50
表…………………………………………………….………………51
圖………………………………………………….…………………52
參考文獻…………………………………………………………….90
圖表目錄

表一、比較人類PAP之GRE與一些其他的GREs…………………………51
圖一、人類PAP及GCAP基因5'-flanking region之比對…………..……52
圖二、構築人類PAPP之luciferase報告質體……………………………..53
圖三、構築人類GCAPP之luciferase報告質體...………………………….54
圖四、比較不同細胞來源的PAPP及GCAPP,在TMK-1細胞的活性……55
圖五、鑑定人類PAPP之糖皮質固醇反應序列區域……………………….56
圖六、構築人類PAPP-375/-280片段插入TATA luciferase報告質體…..…57
圖七、構築人類PAPP-375/-280片段插入GCAPP-556/+51-luciferase報告質體…………………………………………………………………58
圖八、構築人類PAPP-375/-280片段插入GCAPP-281/+51-luciferase報告質體…………………………………………………………………59
圖九、構築人類PAPP-375/-280片段插入CMV啟動區-luciferase報告質體…………………………………………………………..…………..60
圖十、人類PAPP-375/-280片段在pTZ-ATL0載體在TMK-1細胞的活性………………………………………………….…………………...61
圖十一、人類PAP基因啟動區-375至-280片段插入GCAP啟動區在TMK-1細胞的活性……………………………………………………………62
圖十二、人類PAPP-375/-280片段插入CMV啟動區在TMK-1細胞的活性.63
圖十三、構築人類PAPP-375/-280各個刪除片段之luciferase報告質體……64
圖十四、人類PAPP-375/-280各個刪除片段在TMK-1細胞的活性…………65
圖十五、共轉染RS-hGR對不同細胞的PAPP一些刪除片段在TMK-1細胞的活性…….…………………………………………………..…….66
圖十六、在TMK-1細胞中,共轉染不同濃度RS-hGR的PAPP-567/+54序列誘導活性……………………………...…………………………….67
圖十七、共轉染RS-hGR對人類GCAPP各個刪除片段在TMK-1細胞的活性……………………………………………………………………68
圖十八、共轉染RS-hGR對人類PAPP-375/-280片段在TMK-1細胞的活性………………………………………………………………………69
圖十九、共轉染RS-hGR對人類PAPP-375/-280片段插入GCAPP在TMK-1細胞的活性………………….………………………………………...70
圖二十、共轉染RS-hGR對人類PAPP-375/-280片段插入CMV啟動區在TMK-1細胞的活性…………………………………………...………71
圖二十一、共轉染RS-hGR對人類PAPP-375/-280各個刪除片段在TMK-1細胞的活性…………………………………………………………....72
圖二十二、人類PAPP各個刪除片段及GCAPP在HeLa細胞的活性…………73
圖二十三、人類PAPP各個刪除片段及GCAPP在MCF-7細胞的活性……….74
圖二十四、人類PAPP各個刪除片段及GCAPP在BC-M1細胞的活性……….75
圖二十五、構築人類GCAPP一些片段之luciferase報告質體…………………76
圖二十六、構築人類PAPP一些片段之luciferase報告質體……………………77
圖二十七、構築人類PAPP一些片段之luciferase報告質體……………………78
圖二十八、共轉染RS-hGR對GCAPP一些片段在TMK-1細胞之活性………79
圖二十九、共轉染RS-hGR對PAPP之一些片段在TMK-1細胞之活性……….80
圖三十、老鼠及人類GR-DBD於大腸桿菌之過量表現………………………81
圖三十一、Consensus GRE與人類hGR-DBD的凝膠位移分析………………..82
圖三十二、Consensus GRE與老鼠rGR-DBD的凝膠位移分析…………………83
圖三十三、Consensus GRE及一些PAPP及GCAPP之片段與老鼠rGR-DBD的凝膠位移分析……………………….……………………………...84
圖三十四、人類PAPP不含GRE區域之DNA片段不會與老鼠rGR-DBD專一結合…………………………………………..……………………..85
圖三十五GCAPP-313/-279片段與老鼠rGR-DBD的凝膠位移分析…………86
圖三十六、PAPP-335/-295片段與老鼠rGR-DBD的凝膠位移分析……………87
圖三十七、PAPP-320/-295片段與老鼠rGR-DBD的凝膠位移分析……………88
圖三十八、PAPP-335/-295片段與位置相當之GCAPP-313至-279片段與TMK-1核萃取液有不同之凝膠位移分析………….………………..89

1. McComb, R.E., Bowers, Jr., and Posen, S. (1979) Alkaline phosphatases, Plenum Press, New York and London
2. Marques, C., Toribio, M. L., Marcos, A. R., De La Hera, A., Barcena, A., Pezzi, L., and Martinet-A, C. (1989) Expression of alkaline phosphatase in murine B lymphocytes. Correlation with B cell differentiation into IGg secretion. J. Immunol. 142: 3187-3189
3. Herz, F. (1984) Induction of alkaline phosphatase expression in cultured cancer cells, in Stigbrand T Fishman WH (eds) "Human alkaline phosphatase" Alan R. Liss Inc, New York, pp 139-166
4. Kam, W. K., Bresalier, R. S., and Kim, Y. S. (1984) The expression of alkaline phosphatases in human gastrointestinal and pancreatic tissues and cell lines. in Stigbrand T Fishman WH (eds) "Human alkaline phosphatase" Alan R. Liss Inc, New York, pp 207-222
5. Telfer, J. F., and Green, C.D. (1993) Placental alkaline phosphatase activity is inversely related to cell growth rate in HeLaS3 cervical cancer cells. FEBS Lett. 329: 238-244
6. McCarthy, A. D., Cortizo, A. M., Segura, G. G., Bruzzone, L., and Susana, B. E. (1998) Non-enzymatic glycosylation of alkaline phosphatase alters its biological properties. Mol. Cellu. Biochem. 181: 63-69
7. Scheibe, R. J., Moeller-Runge, I., and Mueller W. H. (1991) Retinoic acid induces the expression of alkaine phosphatase In P19 teratocarcinoma cell. J. Biol. Chem. 266: 21300-21305
8. Makiya, R., and Stigbrand, T. (1992) Placental alkaline phosphatase is related to human IgG internalization in Hep2 cell. Biochem. Biophys. Res. Commun. 82: 624-630
9. Chang, T. C., Wang, J. K., Hung, M. W., Chiao, C. H., Tsai, L. C., and Chang, G. G. (1994) Regulation of the expression of alkaline phosphatase in a human breast cancer cell line. Biochem. J. 303:199-205
10. Poelstra, K., Bakker, W. W., Klok, P. A., Kamps, J. A. A. M., Hardonk, M. J., and Meijer, D. K. F. (1997) Dephosphorylation of endotoxin by alkaline phosphatase in Vivo. Amer. J. Path. 151: 1163-1169
11. Parley, J. R., Puzas, J. E., and Baylink, D. J. (1982) Effect of skeletal alkaline phosphatase inhibitors on bone cell proliferation in vitro. Mineral Electrolyte Metab. 7: 316-323
12. Yeh, J. K., and Aloia, J. F. (1986) Intestinal calcium and phosphate transport and intestinal alkaline phosphatase. Bone Miner. 1: 297-306
13. Letellier M., Plante, G. E., Briere, N., and PetiClerc, C. (1982) Participation of alkaline phosphatase in the active transport of phosphates in brush border membrane vesicles. Biochem. Biophys. Res. Commun. 108: 1394-1400
14. DePierre, J. W., and Karnovosky, M. L. (1974) Ecto-enzyme of granulocytes: 5'- nucleotidase. Science 183: 1096-1098
15. Wolpert, M. K., Damle, S. P., Brown, J. E., Sznycer, E., Agrawal, K. C., and Sartoreli, A. C. (1971) The role of phosphohydrolases in the mechanism of resistance of neoplastic cell to 6-thiopurines. Cancer Res. 31: 1620-1626
16. Chan, J. R., and Stinson, R. A. (1986) Dephosphorylation of phosphoproteins of human liver plasma membranes by endogenous and purified liver alkaline phosphatases. J. Biol. Chem. 261: 7635-7639
17. Ansai, T., Awano, S., Chen, X., Fuchi, T., Arimoto, T., Akifusa, S., and Takehara, T. (1998) Purification and characterization of alkaline phosphatase containing phosphotyrosyl activity from the baterium Prevotella intermedia. FEBS Letters. 428: 157-160
18. Souvannavong, V., Lemaire, C., Brown, S., and Adam, A. (1997) UV irradiation of a B-cell hybridoma increase expression of alkaline phosphatase: involvement in apoptosis. Biochem. Cell. Biol. 75: 783-788
19. Fukushi, M., Amizuka, N., Hoshi, K., Ozawa, H., Kumagai, H., Omura, S., Misumi, Y., Ikehara, Y., and Oda, K. (1998) Intracellular retention and degradation of tissue-nonspecific alkaline phosphatase with a Gly317-->Asp substitution associated with lethal hypophosphatasia. Biochem. Biophy. Rese. Communi. 246: 613-618
20. Benham, P. J., Fogh, J., and Harris, H. (1981) Alkaline phosphatase expression in human cell lines derived from various malignancies. Int. J. Cancer. 27: 637-644
21. Kobayashi, T., Sugimoto, T., Kanzawa, M., and Chihara, K. (1998) Identification of an enhancer sequence in 5'-flanking region of 1A exon of mouse liver/bone/kidney-type alkaline phosphatase gene. Biochem. Mol. Biol. Int. 44: 683-691
22. Escalante-Alcalde, D., Recillas-Targa, F., Hernandez-Garcia, D., Castro-Obregon, S., Terao, M., Garattini, E., and Covarrubias, L. (1996) Retinoid acid and methylation cis-regulation elements control the mouse tissue non-specific alkaline phosphatase gene expression. Mech. Dev. 57: 21-32
23. Heath, J. K., Suva, L. J., Yoon, K., Kiledjian, M., Martin, T. J., and Rodan, G. A. (1992) Retinoid acid stimulates transcriptional activity from the alkaline phosphatase promoter in the immortalized rat calvarial cell line, RCT-1. Mol. Endocrinol. 6: 636-646
24. Park, C., Chamberlin, M. E., Pan, C. J., and Chou, J. Y. (1996) Differential expression and butyrate response of human alkaline phosphatase genes are mediated by upstream DNA elements. Biochemistry 35: 9807-9814
25. Ogata, Y., Yamauchi, M., Kim, R. H., Li, J. J., Freedman, L. P., and Sodek, J. (1995) Glucocorticoid regulation of bone sialoprotein (BSP) gene expression. Identification of a glucocorticoid response element in the bone sialoprotein gene promoter. Eur. J. Biochem. 230: 183-192
26. Rhodes, C., and Yamada, Y. (1995) Characterization of glucocorticoid responsive element and identification of an AT-rich element that regulate the link protein gene. Nucleic Acids Res. 23: 2305-2313
27. Del Monaco, M., Covello, S. P., Kennedy, S. H., Gilinger, G., Litwack, G., and Uitto, J. (1997) Identification of novel glucocorticoid-response elements in human elastin promoter and demonstration of nucleotide sequence specificity of the receptor binding. J. Invest. Dermatol. 108: 938-942
28. Garlatti, M., Aggerbeck, M., Bouguet, J., and Barouki, R. (1996) Contribution of a nuclear factor 1 binding site to the glucocorticoid regulation of the cytosolic aspartate aminotransferase gene promoter. J. Biol. Chem. 271: 32629-32634
29. Pearce, D., Matsui, W., Miner, J. N., and Yamamoto, K. R. (1998) Glucocorticoid receptor transcriptional activity determined by spacing of receptor and nonreceptor DNA sites. J. Biol. Chem. 273: 30081-30085
30. Herz, F. (1984) Induction of alkaline phosphatase expression in cultured cancer cells, in Stigbrand, T., and Fishman, W. H. (eds) "Human alkaline phosphatase" Alan, R., Liss Inc, New York, pp 139-166
31. Ghosh, N. K., Rukenstein, A., Baltimore, R., and Cox, R. P. (1972) Studies on hormonal induction of alkaline phosphatase in HeLa cell cultures. Kinetic, thermodynamic and electrophoretic properties of induced and base-level enzymes. Biochim. Biophys. Acta. 286, 175-185
32. Chou, J. Y., and Takahashi, S. (1987) Control of placental alkaline phosphatase gene expression in HeLa cells: induction of synthesis by prednisolone and sodium butyrate. Biochemistry 26, 3596-3602
33. Majeska, R. J., Nair, B. C., and Rodan, G. A. (1985) Glucocorticoid regulation of alkaline phosphatase in the osteoblastic osteosarcoma cell line ROS 17/2.8. Endocrinology 116: 170-179
34. Green, E., Todd, B., and Heath, D. (1990) Mechanism of glucocorticoid regulation of alkaline phosphatase gene expression in osteoblast-like cells. Eur. J. Biochem. 188: 147-53
35. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Press New York
36. Chang, T. C., Nardulli, A. M., Lew, D., and Shapiro, D. J. (1992) A highly sensitive mixed-phase assay for chloramphenicol acetyl activity in cultured cell. Anal. Biochem. 72: 248-254
37. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254
38. Luisi, B. F., Xu, W. X., Otwinowski, Z., Freedman, L. P., Yamamoto, K. R., and Sigler, P. B. (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 478-479
39. Chodosh, L. A., Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1988) Current Protocols in Molecular Biology 2: 1-10
40. Ham, J., Thomson, A., Needham, M., Webb, P., and Parker, M. (1988) Characterization of response elements for androgens, glucocorticoids and progestins in mouse mammary tumour virus. Nucleic Acids Res. 16: 5263-5276
41. Jantzen, H. M., Strahle, U., Gloss, B., Stewart, F., Schmid, W., Boshart, M., Miksicek, R., and Schutz, G. (1987) Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 49: 29-38
42. Klock, G., Strahle, U., and Schutz, G. (1987) Oestrogen and glucocorticoid responsive elements are closely related but distinct. Nature 329: 734-6
43. Cornett, L. E., Hiller, F. C., Jacobi, S. E., Cao, W., and McGraw, D. W. (1998) Identification of a glucocorticoid response element in the rat beta2-adrenergic receptor gene. Mole. Pharmacol. 54: 1016-1023
44. Asselta, R., Duga, S., Modugno, M., and Malcovati, M. (1998) Indentification of a glucocorticoid response element in the human g chain fibrinogen promoter. Thomb. Haemost. 79: 1144-1150
45. Poreba, E., Gozdicka-Jozefiak, A., and Kedzia, H. (1998) Study on interaction of proteins isolated from epithelial cervical tissue with glucocorticoid-response element of HPV16. Eur. J. Gynecol. Oncol. 19: 394-398
46. Meyer, T., Gustafsson, J. A., and Carlstedt-Duke, J. (1997) Glucocorticoid-dependent transcriptional repression of the osteocalcin gene by competitive binding at the TATA box. DNA & Cell Biology. 16: 919-927
47. Pereira, T. M., Carlstedt-Duke, J., Lechner, C., and Gustafsson, J. A. (1998) Indentification of a functional glucocorticoid response element in the CYP3A1/IGC2 gene. DNA & Cell Biology. 17: 39-49
48. Deng, G., Liu, G., Hu, L., Gum, J. R. Jr., and Kim, Y. S. (1992) Transcriptional regulation of the human placental-like alkaline phosphatase gene and mechanisms involved in its induction by sodium butyrate. Cancer Res. 52: 3378-3383
49. Chang, T. C., Nardulli, A. M., Lew, D., and Shapiro, D. J. (1992) The role of estrogen response elements in expression of the Xenopus laevis vitellogenin B1 gene. Mol. Endocrinol. 6: 346-354

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top