|
Hsiao, C. R., Lin, C. W., Chou, C. M., Chung, C. J., He, J.L., “Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors,” Applied Surface Science, 346, 50-56 (2015). [2]Kuo, Y. L., and Chang, K. H., “Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys,” Surface and Coatings Technology, 283, 194-200 (2015). [3]Lommatzsch, U., and Ihde, J., “Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low-Adhesion Surfaces,” Plasma Processes and Polymers, 6, 10, 642-648 (2009). [4]Ji, H., Chen, G., Yang, J., Hu, J., Song, H., Zhao, Y., “A simple approach to fabricate stable superhydrophobic glass surfaces,” Applied Surface Science, 266, 105-109 (2013). [5]Zhang, X., Guo, Y., Zhang, Z., Zhang, P., “Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane,” Applied Surface Science, 284, 319-323 (2013). [6]Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., Takahara, A., “Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups,” Langmuir, 21, 16, 7299-7302 (2005). [7]Chang, K. C., Chen, Y. K., and Chen, H., “Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors,” Surface and Coatings Technology, 201, 24, 9579-9586 (2007). [8]Sheng, Y., Yiting, W., Xiangyu, Z., Zhou, J., "Fabrication and analysis of super-hydrophobic ZnO film for microfluidic devices." Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, Shanghai, 1428-1430(2010). [9]Gong, D., Long, J., Fan, P., Jiang, D., Zhang, H., Zhong, M., “Thermal stability of micro–nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picosecond laser ablated template,” Applied Surface Science, 331, 437-443 (2015). [10]Liu, J., Xiao, X., Shi, Y., Wan, C., “Fabrication of a superhydrophobic surface from porous polymer using phase separation,” Applied Surface Science, 297, 33-39 (2014). [11]Wang, Q., Song, Y., Wang, L., Xiao, J., “Fabrication of template with dual-scale structures based on glass wet etching and its application in hydrophobic surface preparation,” Micro & Nano Letters, IET, 9, 5, 340-344 (2014). [12]Hare, E. F., Shafrin, E. G., and Zisman, W. A., “Properties of Films of Adsorbed Fluorinated Acids,” The Journal of Physical Chemistry, 58, 3, 236-239 (1954). [13]Matsubara, K., Danno, M., Inoue, M., Nishizawa, H., Honda, Y., Abe, T., “Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system,” Applied Surface Science, 284, 340-347 (2013). [14]Yali, S., Yuanyuan, P., Jieming, W., Yaqi, C., “Perfluorinated Chemicals Related Environmental Problems,” Progress In Chemistry, 21, 370-376 (2009). [15]Sohbatzadeh, F., Safari, R., Etaati, G. R., Asadi, E., Mirzanejhad, S., Hosseinnejad, M. T., Samadi, O., Bagheri, H., “Characterization of diamond-like carbon thin film synthesized by RF atmospheric pressure plasma Ar/CH4 jet,” Superlattices and Microstructures, 89, 231-241 (2016). [16]Chou, T. S., Lin, H. T., Chen, Y. Y., Pan, K. L., Juang, J. Y., “Effect of main gas and carrier gas on ZnO thin films deposited by atmospheric pressure plasma jet,” Thin Solid Films, 594, Part B, 282-286 (2015). [17]Wang, S. D., and Luo, S. S., “Fabrication of transparent superhydrophobic silica-based film on a glass substrate,” Applied Surface Science, 258, 14, 5443-5450 (2012). [18]Kavale, M. S., Mahadik, D. B., Parale, V. G., Wagh, P. B., Gupta, S. C., Rao, A. V., Barshilia, H. C., “Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent,” Applied Surface Science, 258, 1, 158-162 (2011). [19]Favia, P., Cicala, G., Milella, A., Palumo, F., Rossini, P., Agostino, R., “Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges,” Surface and Coatings Technology, 169–170, 609-612 (2003). [20]Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A., “Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating,” Applied Surface Science, 244, 1–4, 619-622 (2005). [21]Kylián, O., Petr, M., Serov, A., Solař, J., Polonskyi, O., Hanuš, J., Choukourov, A., Biederman, H., “Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer,” Vacuum, 100, 57-60 (2014). [22]Kuzminova, A., Shelemin, A., Kylián, O., Petr, M., Kratochvil, J., Solař, P., Biederman, H., “From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles,” Vacuum, 110, 58-61 (2014). [23]Ladwig, A., Babayan, S., Smith, M., Hester, M., Highland, W., Koch, R., Hicks, R., “Atmospheric plasma deposition of glass coatings on aluminum,” Surface and Coatings Technology, 201, 14, 6460-6464 (2007). [24]Yang, S. H., Liu, C. H., Su, C. H., Chen, H., “Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application,” Thin Solid Films, 517, 17, 5284-5287 (2009). [25]Gil, E., Park, J. B., Oh, J. S., Yeom, G. Y., “Characteristics of SiOx thin films deposited by atmospheric pressure chemical vapor deposition as a function of HMDS/O2 flow rate,” Thin Solid Films, 518, 22, 6403-6407 (2010). [26]Kim, Y. S., Lee, J. H., Lim, J. T., Park, J. B., Yeom, G. Y., “Atmospheric pressure PECVD of SiO2 thin film at a low temperature using HMDS/O2/He/Ar,” Thin Solid Films, 517, 14, 4065-4069 (2009). [27]Levasseur, O., Stafford, L., Gherardi, N., Beche, E., Esvan, J., Blanchet, P., Riedl, B., Sarkissian, A., “Role of substrate outgassing on the formation dynamics of either hydrophilic or hydrophobic wood surfaces in atmospheric-pressure, organosilicon plasmas,” Surface and Coatings Technology, 234, 42-47 (2013). [28]Boer, H. J., “Mass Flow Controlled Evaporation System,” Le Journal de Physique IV, 05, C5, C5-961-C5-966 (1995). [29]Haque, M. S., Naseem, H. A., and Brown, W. D., “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability,” Thin Solid Films, 308–309, 68-73 (1997). [30]Boudoukha, L., Paletto, S., Fantozzi, G., Halitim, F., “Effects of ion implantation and annealing on mechanical properties of ceramic using nanoindentor techniques,” Journal of Material Science, 32, 2911-2920 (1997). [31]He, G. S., Qin, H.-Y., and Zheng, Q., “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water Wavelength, size, and angle dependences,” Journal of Applied Physics, 105, 2, 023110 (2009). [32]Mattarelli, M., Montagna, M., and Verrocchio, P., “Optical scattering in glass ceramics,” Philosophical Magazine, 88, 33-35, 4125-4130 (2008). [33]Cassie, A. B. D., and Baxter, S., “Wettability of porous surfaces,” Transactions of the Faraday Society, 40, 0, 546-551 (1944). [34]Dasilva, M. L. P., Tan, I. H., Nascimento Filho, A. P, Galeazzo, E., Jesus, D. P., “Use of plasma polymerized highly hydrophobic hexamethyldissilazane (HMDS) films for sensor development,” Sensors and Actuators B: Chemical, 91, 1–3, 362-369 (2003). [35]Múgica-Vidal, R., Alba-Elías, F., Sainz-García, E., Pantoja-Ruiz, M., “Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon,” Applied Surface Science, 347, 325-335 (2015). [36]Wu, Y., Bekke, M., Inoue, Y., Sugimura, H., Kitaguchi, H., Liu, C., Takai, O., “Mechanical durability of ultra-water-repellent thin film by microwave plasma-enhanced CVD,” Thin Solid Films, 457, 1, 122-127 (2004). [37]Launer, P. J., “Infrared analysis of organosilicon compounds: spectra-structure correlations,” Silicone compounds register and review, 100-103 (1987).
|