跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 11:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔立軒
研究生(外文):Kung, Li-Hsuan
論文名稱:以大氣壓電漿束於玻璃上鍍製高透光超疏水性氧化矽薄膜
論文名稱(外文):The Deposition of SiOx Films on Glasses for Super- Hydrophobicity and High Transmittance by Atmospheric Pressure Plasma Jet
指導教授:丁鯤
指導教授(外文):Ting, Kuen
口試委員:蕭瑞昌涂光權邱建超丁鯤
口試委員(外文):Hsiao, Ruey-ChangTu, Kuan-ChywanChiu, Chien-ChaoTing, Kuen
口試日期:2016-01-21
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:化工與材料工程系碩士班 
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:大氣壓電漿超疏水透光度氧化矽薄膜
外文關鍵詞:Atmospheric Pressure PlasmaSuper-HydrophobicTransmittanceSiOx Films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用大氣壓電漿束 (Atmospheric Pressure Plasma Jet)搭配控制蒸發混合系統(Controlled Evaporating and Mixing,CEM System),將液體前驅物六甲基二矽氮烷(HMDSN)輸送至電漿中離子化,並沉積氧化矽薄膜至玻璃載玻片上,以探討不同前驅物流量、載氣流量、基板移動速度、電漿間距、基板溫度、退火溫度等參數對薄膜超疏水性與透光性的效應。
本研究使用水滴接觸角儀(WCA)、紫外/可見光分光光譜儀(UV/Visible Spectroscopy)、原子力顯微鏡(AFM)、場發射掃描式電子顯微鏡(FE-SEM)、X-射線繞射分析儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR)等儀器進行分析,以探討不同實驗參數對水滴接觸角、透光度、表面粗糙度、覆蓋率的貢獻。本研究發現未經退火處理最佳水滴接觸角參數為155度、其透光度為48%(500 nm),且在標準參數下、經退火處理後,水滴接觸角可高達160度、透光度提升為83%(500 nm)。

In this study, the deposition of SiOx film on glass has been made by the Atmospheric Pressure Plasma Jet (APPJ) with Controlled Evaporator Mixer System (CEM) using (Hexamethyldisilazane, HMDSN) as precursor and controlling by read-out control devices. Tests with various combination of the process parameters, such as precursor flow rate, carrier gas flow rate, substrate moving speed, nozzle distance, substrate temperature, annealing temperature had been performed to study its effects on SiOx films properties. In this study, water contact angle, UV/Visible Spectroscopy, Atmospheric Force Microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffractometer (XRD) and Fourier Transform Infrared spectrometer (FTIR) had been used to examine and analyze the effects of various experimental parameters on water contact angles on the thin film. This study found that without annealing treatment the optimal water contact angle is 155°with the transmittance of 48% (500 nm) and when the thin films with standard parameters after annealing treatment, the water contact angle is 160°with the transmittance of 83% (500 nm).
摘要 i
ABSTRACT ii
誌 謝 iv
目 錄 v
表目錄 viii
圖目錄 x
第一章 前言1
1.1 研究背景與動機1
1.2 文獻回顧2
第二章 實驗設備與方法5
2.1 液體輸送與氣體蒸氣控制系統5
2.2 大氣壓電漿與鍍膜系統8
2.3 實驗方法10
2.3.1 實驗流程10
2.3.2 實驗前驅物及試片11
2.3.3 試片準備13
2.3.4 實驗參數設定14
2.3.5 退火處理實驗15
2.3.6 實驗步驟16
2.4 檢測儀器16
2.4.1 水滴接觸儀18
2.4.2 紫外光/可見光分光光譜儀18
2.4.3 原子力顯微鏡19
2.4.4 場發射掃描式電子顯微鏡21
2.4.5 X-射線繞射分析儀23
2.4.6 傅立葉轉換紅外線光譜儀24
第三章 實驗結果與討論26
3.1 前驅物流量對SiOx薄膜性質影響26
3.1.1 前驅物流量對水滴接觸角之影響26
3.1.2 前驅物流量對表面形貌及粗糙度之影響27
3.1.3 前驅物流量對透光度之影響28
3.1.4 前驅物流量對表面形貌與覆蓋率之影響30
3.1.5 前驅物流量結果討論33
3.2 載氣流量對SiOx薄膜性質影響34
3.2.1 載氣流量對水滴接觸角之影響35
3.2.2 載氣流量對表面形貌及粗糙度之影響35
3.2.3 載氣流量對透光度之影響37
3.2.4 載氣流量對表面形貌與覆蓋率之影響38
3.2.5 載氣流量結果討論40
3.3 基板移動速度對SiOx薄膜性質影響41
3.3.1 基板移動速度對水滴接觸角之影響42
3.3.2 基板移動速度對表面形貌及粗糙度之影響42
3.3.3 基板移動速度對透光度之影響43
3.3.4 基板移動速度對表面形貌與覆蓋率之影響45
3.3.5 基板移動速度結果討論 47
3.4 電漿間距對SiOx薄膜性質影響48
3.4.1 電漿間距對水滴接觸角之影響49
3.4.2 電漿間距對表面形貌及粗糙度之影響49
3.4.3 電漿間距對透光度之影響51
3.4.4 電漿間距對於表面形貌與覆蓋率之影響52
3.4.5 電漿間距結果討論55
3.5 基板溫度對SiOx薄膜性質影響56
3.5.1 基板溫度對水滴接觸角之影響57
3.5.2 基板溫度對表面形貌及粗糙度之影響57
3.5.3 基板溫度對透光度之影響59
3.5.4 基板溫度對表面形貌與覆蓋率之影響60
3.5.5 基板溫度結果討論62
3.6 退火溫度對SiOx薄膜性質影響63
3.6.1 退火溫度對水滴接觸角之影響63
3.6.2 退火溫度對表面形貌及粗糙度之影響64
3.6.3 退火溫度對透光度之影響65
3.6.4 退火溫度對表面形貌與覆蓋率之影響65
3.6.5 退火溫度結果討論69
3.7 FTIR 分析結果與討論70
3.8 XRD 分析結果與討論72
3.9 薄膜回復時間之觀察結果74
第四章 結論與未來展望78
4.1 結論78
4.2 未來展望79
參考文獻81

Hsiao, C. R., Lin, C. W., Chou, C. M., Chung, C. J., He, J.L., “Surface modification of blood-contacting biomaterials by plasma-polymerized superhydrophobic films using hexamethyldisiloxane and tetrafluoromethane as precursors,” Applied Surface Science, 346, 50-56 (2015).
[2]Kuo, Y. L., and Chang, K. H., “Atmospheric pressure plasma enhanced chemical vapor deposition of SiOx films for improved corrosion resistant properties of AZ31 magnesium alloys,” Surface and Coatings Technology, 283, 194-200 (2015).
[3]Lommatzsch, U., and Ihde, J., “Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low-Adhesion Surfaces,” Plasma Processes and Polymers, 6, 10, 642-648 (2009).
[4]Ji, H., Chen, G., Yang, J., Hu, J., Song, H., Zhao, Y., “A simple approach to fabricate stable superhydrophobic glass surfaces,” Applied Surface Science, 266, 105-109 (2013).
[5]Zhang, X., Guo, Y., Zhang, Z., Zhang, P., “Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane,” Applied Surface Science, 284, 319-323 (2013).
[6]Hikita, M., Tanaka, K., Nakamura, T., Kajiyama, T., Takahara, A., “Super-Liquid-Repellent Surfaces Prepared by Colloidal Silica Nanoparticles Covered with Fluoroalkyl Groups,” Langmuir, 21, 16, 7299-7302 (2005).
[7]Chang, K. C., Chen, Y. K., and Chen, H., “Preparation and characterization of superhydrophobic silica-based surfaces by using polypropylene glycol and tetraethoxysilane precursors,” Surface and Coatings Technology, 201, 24, 9579-9586 (2007).
[8]Sheng, Y., Yiting, W., Xiangyu, Z., Zhou, J., "Fabrication and analysis of super-hydrophobic ZnO film for microfluidic devices." Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, Shanghai, 1428-1430(2010).
[9]Gong, D., Long, J., Fan, P., Jiang, D., Zhang, H., Zhong, M., “Thermal stability of micro–nano structures and superhydrophobicity of polytetrafluoroethylene films formed by hot embossing via a picosecond laser ablated template,” Applied Surface Science, 331, 437-443 (2015).
[10]Liu, J., Xiao, X., Shi, Y., Wan, C., “Fabrication of a superhydrophobic surface from porous polymer using phase separation,” Applied Surface Science, 297, 33-39 (2014).
[11]Wang, Q., Song, Y., Wang, L., Xiao, J., “Fabrication of template with dual-scale structures based on glass wet etching and its application in hydrophobic surface preparation,” Micro & Nano Letters, IET, 9, 5, 340-344 (2014).
[12]Hare, E. F., Shafrin, E. G., and Zisman, W. A., “Properties of Films of Adsorbed Fluorinated Acids,” The Journal of Physical Chemistry, 58, 3, 236-239 (1954).
[13]Matsubara, K., Danno, M., Inoue, M., Nishizawa, H., Honda, Y., Abe, T., “Hydrophobization of polymer particles by tetrafluoromethane (CF4) plasma irradiation using a barrel-plasma-treatment system,” Applied Surface Science, 284, 340-347 (2013).
[14]Yali, S., Yuanyuan, P., Jieming, W., Yaqi, C., “Perfluorinated Chemicals Related Environmental Problems,” Progress In Chemistry, 21, 370-376 (2009).
[15]Sohbatzadeh, F., Safari, R., Etaati, G. R., Asadi, E., Mirzanejhad, S., Hosseinnejad, M. T., Samadi, O., Bagheri, H., “Characterization of diamond-like carbon thin film synthesized by RF atmospheric pressure plasma Ar/CH4 jet,” Superlattices and Microstructures, 89, 231-241 (2016).
[16]Chou, T. S., Lin, H. T., Chen, Y. Y., Pan, K. L., Juang, J. Y., “Effect of main gas and carrier gas on ZnO thin films deposited by atmospheric pressure plasma jet,” Thin Solid Films, 594, Part B, 282-286 (2015).
[17]Wang, S. D., and Luo, S. S., “Fabrication of transparent superhydrophobic silica-based film on a glass substrate,” Applied Surface Science, 258, 14, 5443-5450 (2012).
[18]Kavale, M. S., Mahadik, D. B., Parale, V. G., Wagh, P. B., Gupta, S. C., Rao, A. V., Barshilia, H. C., “Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent,” Applied Surface Science, 258, 1, 158-162 (2011).
[19]Favia, P., Cicala, G., Milella, A., Palumo, F., Rossini, P., Agostino, R., “Deposition of super-hydrophobic fluorocarbon coatings in modulated RF glow discharges,” Surface and Coatings Technology, 169–170, 609-612 (2003).
[20]Teshima, K., Sugimura, H., Inoue, Y., Takai, O., Takano, A., “Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating,” Applied Surface Science, 244, 1–4, 619-622 (2005).
[21]Kylián, O., Petr, M., Serov, A., Solař, J., Polonskyi, O., Hanuš, J., Choukourov, A., Biederman, H., “Hydrophobic and super-hydrophobic coatings based on nanoparticles overcoated by fluorocarbon plasma polymer,” Vacuum, 100, 57-60 (2014).
[22]Kuzminova, A., Shelemin, A., Kylián, O., Petr, M., Kratochvil, J., Solař, P., Biederman, H., “From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles,” Vacuum, 110, 58-61 (2014).
[23]Ladwig, A., Babayan, S., Smith, M., Hester, M., Highland, W., Koch, R., Hicks, R., “Atmospheric plasma deposition of glass coatings on aluminum,” Surface and Coatings Technology, 201, 14, 6460-6464 (2007).
[24]Yang, S. H., Liu, C. H., Su, C. H., Chen, H., “Atmospheric-pressure plasma deposition of SiOx films for super-hydrophobic application,” Thin Solid Films, 517, 17, 5284-5287 (2009).
[25]Gil, E., Park, J. B., Oh, J. S., Yeom, G. Y., “Characteristics of SiOx thin films deposited by atmospheric pressure chemical vapor deposition as a function of HMDS/O2 flow rate,” Thin Solid Films, 518, 22, 6403-6407 (2010).
[26]Kim, Y. S., Lee, J. H., Lim, J. T., Park, J. B., Yeom, G. Y., “Atmospheric pressure PECVD of SiO2 thin film at a low temperature using HMDS/O2/He/Ar,” Thin Solid Films, 517, 14, 4065-4069 (2009).
[27]Levasseur, O., Stafford, L., Gherardi, N., Beche, E., Esvan, J., Blanchet, P., Riedl, B., Sarkissian, A., “Role of substrate outgassing on the formation dynamics of either hydrophilic or hydrophobic wood surfaces in atmospheric-pressure, organosilicon plasmas,” Surface and Coatings Technology, 234, 42-47 (2013).
[28]Boer, H. J., “Mass Flow Controlled Evaporation System,” Le Journal de Physique IV, 05, C5, C5-961-C5-966 (1995).
[29]Haque, M. S., Naseem, H. A., and Brown, W. D., “Post-deposition processing of low temperature PECVD silicon dioxide films for enhanced stress stability,” Thin Solid Films, 308–309, 68-73 (1997).
[30]Boudoukha, L., Paletto, S., Fantozzi, G., Halitim, F., “Effects of ion implantation and annealing on mechanical properties of ceramic using nanoindentor techniques,” Journal of Material Science, 32, 2911-2920 (1997).
[31]He, G. S., Qin, H.-Y., and Zheng, Q., “Rayleigh, Mie, and Tyndall scatterings of polystyrene microspheres in water Wavelength, size, and angle dependences,” Journal of Applied Physics, 105, 2, 023110 (2009).
[32]Mattarelli, M., Montagna, M., and Verrocchio, P., “Optical scattering in glass ceramics,” Philosophical Magazine, 88, 33-35, 4125-4130 (2008).
[33]Cassie, A. B. D., and Baxter, S., “Wettability of porous surfaces,” Transactions of the Faraday Society, 40, 0, 546-551 (1944).
[34]Dasilva, M. L. P., Tan, I. H., Nascimento Filho, A. P, Galeazzo, E., Jesus, D. P., “Use of plasma polymerized highly hydrophobic hexamethyldissilazane (HMDS) films for sensor development,” Sensors and Actuators B: Chemical, 91, 1–3, 362-369 (2003).
[35]Múgica-Vidal, R., Alba-Elías, F., Sainz-García, E., Pantoja-Ruiz, M., “Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon,” Applied Surface Science, 347, 325-335 (2015).
[36]Wu, Y., Bekke, M., Inoue, Y., Sugimura, H., Kitaguchi, H., Liu, C., Takai, O., “Mechanical durability of ultra-water-repellent thin film by microwave plasma-enhanced CVD,” Thin Solid Films, 457, 1, 122-127 (2004).
[37]Launer, P. J., “Infrared analysis of organosilicon compounds: spectra-structure correlations,” Silicone compounds register and review, 100-103 (1987).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊