跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 11:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪偉家
研究生(外文):Wei-Chia Hung
論文名稱:表面粗糙度對NACA0015機翼表面壓力特性之影響分析
論文名稱(外文):The Effects of Surface Roughness on the Characteristics of Surface Pressure of NACA 0015 Airfoil
指導教授:莊書豪莊書豪引用關係
指導教授(外文):Shu-Hao Chuang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:154
中文關鍵詞:NACA系列機翼雷諾數表面粗糙度噴砂
外文關鍵詞:NACA airfoil seriesReynolds numbersurface roughnesssandblast
相關次數:
  • 被引用被引用:0
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文研究是以實驗方法探討二維對稱機翼模型(NACA 0015)表面因噴砂所造成表面各種粗糙度對機翼上下表面壓力變化之影響。實驗工作於低速開放式風洞中進行,自由流速所對應之雷諾數範圍為3.8×104~1.5×105,實驗之參數為攻角α(α=0°, 5°, 10°, 15°, 20°)、雷諾數Re(3.8×104~1.5×105)、噴砂號數(#100, #150)以及噴砂寬度w(w=1, 2, 3 mm)。本文首先探討不同實驗參數對機翼表面壓力變化分佈及機翼面受力之影響,進而找出不同噴砂參數與機翼表面壓力之間的對應關係。
本文研究結果顯示,在不同實驗參數下機翼表面壓力之變化程度會有不同的分佈型態。當流速為低雷諾數(Re≦3.8×104)時,噴砂效應對機翼表面壓力的影響並不明顯;當高雷諾數(Re≧1.1×105)時,噴砂效應對機翼表面壓力分佈則產生較顯著的影響。本文發現噴砂寬度對機翼表面壓力分佈產生之壓升效應並非呈現線性關係,因為機翼表面之壓升動力行為在噴砂寬度w=3 mm時並沒有達到最大,反而在噴砂寬度w=2 mm時達到最大值。另外,在噴砂號數的影響方面,當自由流速為20 m/s且機翼攻角為5與10度下,噴砂號數為#100時在翼前緣附近分別產生較明顯之壓降現象與壓升動力行為。此壓降現象隨著自由流速與噴砂寬度增加而變大,且壓升動力行為會有明顯往翼前緣移動之現象,但噴砂號數為#150時之壓升現象並不明顯。
The present study was intended to investigate the surface pressure of NACA 0015 airfoil at upper and lower surface due to the sandblast roughness. The experiment was proceeded in an low-speed and open-type wind tunnel. The dynamic behavior of surface pressure of NACA 0015 airfoil was analyzed at various angle of attack, Reynolds number, number of sandblast, and width of sandblast. The freestream velocity was operated at 5~20 m/s and the corresponding Reynolds number at 3.8×104~1.5×105 which based on the chord of the wing. The purpose of this study was intended to understand the relation between surface pressure of the airfoil and parameters. The surface pressure of NACA 0015 had measured and analyzed the aerodynamic performance and flow field characteristics of NACA 0015 airfoil.
The experimental results was shown that a parameter of sandblast was one of important parameters to affect the flow field. The parameter of sandblast was not apparent to affect the flow field at low Reynolds number, but it appeared gradually dominated at higher Reynolds number. The general phenomena of the surface pressure drop increased with more sandblast width was not shown in this study. Moreover, the pressure drop phenomenon and the pressure lift dynamic behavior respectively near the leading edge when angle of attack were 5° and 10°, freestream velocity was 20 m/s, number of sandblast was #100. The pressure drop phenomenon beacame large with increasing the freestream velocity and width of sandblast, and the pressure lift dynamic behavior moved forward to the leading edge obviously. However, the phenomenon of rising pressure for sandblast number #150 wasn’t shown apparently. The present results can be provided to the references for the defense industry.
中文摘要 I
英文摘要 II
目 錄 III
表目錄 V
圖目錄 VI
符號說明 XIV
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機 6
1-4 研究目的 8
第二章 實驗設備與模型 9
2-1 風洞 9
2-2 模型 11
2-3 壓力量測系統 11
2-3-1 壓力掃描器(Linear Pressure Scanner) 11
2-3-2 資料擷取卡 12
2-4 電腦控制系統 13
第三章 實驗方法與程序 15
3-1 實驗參數 15
3-2 壓力量測儀器校驗 16
3-3 表面粗糙度製作 17
3-4 表面壓力量測 17
3-5 資料處理方法 18
3-6 實驗設計 19
3-7 實驗步驟 19
第四章 結果與討論 21
4-1 無表面粗糙度之機翼表面壓力分佈 21
4-2 無表面粗糙度與噴砂號數#100 24
4-3 無表面粗糙度與噴砂號數#150 32
4-4 噴砂號數#100與#150 39
第五章 結論與建議 48
5.1 結論 48
5.2 建議 49
參考文獻 50
誌 謝 139
1. Schlichting, H., Boundary-Layer Theory (7th edn.)., McGraw-Hill Book Company, New York, pp. 536-542, 1979
2. Dvorak, F. A., Calculation of Turbulent Boundary Layers on Rough Sur-faces in Pressure Gradient. AIAA Journal, Vol. 7, No. 9, pp. 1752-1759, 1969
3. 陳昭銘,表面粗糙物對穿音速邊界層轉換之影響,碩士論文,國立成功大學航空太空工程學系,台南巿,1998
4. Sedney, R., A Survey of The Effects of Small Protuberances on Boundary Layer Flows. AIAA Journal, Vol. 11, No. 1, pp. 782-792, June, 1973
5. Hoffmann, M. J., Ramsay, R. Reuss, and Gregorek G. M., Effects of Grit Roughness and Pitch Oscillations on the NACA 4415 Airfoil, TP-442-7815, The Ohio State University, National Renewable Energy Laboratory, Columbus, Ohio, July, 1996
6. Janiszewska, J. M., Ramsay, R. Reuss, Lee, J. D., and Gregorek, G. M., Effects of Grit Roughness and Pitch Oscillation on the L303 Airfoil, The Ohio State University, National Renewable Energy Laboratory, Columbus, Ohio, February, 1999
7. Penna, P.J., Su, J. C., and Syms, G.F., Experimental and Numerical Stud-ies of the Effects of Upper Surface Roughness on Aileron Performance, LTR-AL-2003-0097, National Research Council Canada, Ottawa, Ontario, Canada, 2003
8. Hooker, Ray W., The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness, Tech. Note No. 457, National Advisory Commit-tee for Aeronautics, Washington, DC, April, 1933
9. Hopko, Russel N., The Effect of Some Surface Roughness Elements on the Drag of a Body of Revolution at Supersonic Speeds, Research Mem. L54I21, National Advisory Committee for Aeronautics, Washington, DC, November 24, 1954
10. Braslow, A. L. and von Doenhoff, A. E., The Effect of Distributed Sur-face Roughness or Laminar Flow in Boundary and Flow Control, Ed. G. V. Lachman, Vol.2, Pergamon Press, New York, 1961
11. von Doenhoff, A. E. and Horton, E. A., A Low Speed Experimental In-vestigation of the Effect on a Sand paper Type of Roughness on Boundary Layer Transition, Tech. Note No. 3858, National Advisory Committee for Aeronautics, Washington, DC, 1958
12. Dong Z., Liu X. and Wang X., Aerodynamic Roughness of Gravel Sur-faces, Geomorphology, Vol. 43, pp. 17-31, February, 2002
13. Krogstad, P. –A. and Antonia, R. A., Surface Roughness Effects in Tur-bulent Boundary Layers, Experiments in Fluids, Vol. 27, pp. 450-460, 1999
14. Bruce, J. Holmes, Clifford, J. Obara, and Long P. Yip, Natural Laminar Flow Experiments on Modern Airplane Surfaces, NASA Tech. Paper 2256, 1984
15. Poinsatte, Philip E., Van Fossen, G. James, and DeWitt, Kenneth J., Roughness effects on heat transfer from a NASA 0012 airfoil, Journal of Aircraft, Vol. 28, pp. 908-911, 1991
16. Chan, Y. Y., Comparison of Boundary Layer Trips of Disk and Grit Types on Airfoil Performance at Transonic Speeds, National Aeronautical Establishment, National Research Council, Canada, 1988
17. Braslow, A. L. and Knox, F. C., Simplified Method for Determination of Critical Height of Distributed Roughness Particles for Boundary Layer Transition at Mach Numbers from 0 to 5, Tech. Note No. 4363, National Advisory Committee for Aeronautics, Washington, DC, 1958
18. Russo, G. P., etc., Boundary Layer Simulation and Control in Wind Tun-nels, AGARD Advisory Report No. 224, 1988
19. Timmer, W. A. and Schaffarczyk, A. P., The Effect of Roughness at High Reynolds Numbers on The Performance of DU 97-W-300Mod, 2004
20. Kenichi RINOIE, Dong Youn KWAK, Katsuhiro MIYATA, and Masayo-shi NOGUCHI, Leading-Edge Vortex Flaps for Supersonic Transport Configuration-Effects of Flap Configurations and Rounded Leading-Edges, ICAS 2002 Congress, 2002
21. Reuss, R. L., Hoffmann, M. J. and Gregorek, G. M., Effects of Surface Roughness and Vortex Generators on the NACA 4415 Airfoil, TP-442-6472, National Renewable Energy Laboratory, The Ohio State University, Columbus, Ohio, December, 1995
22. Schrenk, O., Effects of Roughness on Airfoil, Tech. Mem. No. 430, Na-tional Advisory Committee for Aeronautics, Washington, DC, Septem-ber, 1927
23. English, Roland D., Some Effects of Leading-Edge Roughness on the Ai-leron Effectiveness and Drag of a Thin Rectangular Wing Employing a Full-Span Aileron at Mach Numbers From 0.6 to 1.5, Research Mem. L53I25, National Advisory Committee for Aeronautics, Washington, DC, 1953
24. Korkegi, R. H., Transition studies and skin-friction measurements on an insulated flat plate at a Mach number of 5.8, JAS, Vol. 23, pp. 97-102, 1956
25. Anonymous, Final Report on LFC Aircraft Design Data Laminar Flow Control Demonstration Program, NOR 67-136 (Contract AF 33(657)-13930), Northrop Corp., June, 1967
26. Beasley, J. A., Calculation of the Laminar Boundary Layer and Prediction of Transition on a Sheared Wing, R. and M., No.3787, 1976
27. Coleman, W. S., Roughness Due to Insects. Boundary layer and Flow Control, Vol. 2, pp. 682-747, 1961
28. Gilkey, R. D., Design and Wind Tunnel Tests of Winglets on a DC-10 Wing, NASA CR-3119, 1979
29. William H. Rae JR. and Alan Pope, Low–Speed Wind Tunnel Testing, John Wiley & Sons, 1984
30. Banner, Richard D., McTigue, John G., and Petty, Glibert Jr., Boundary-Layer-Transition Measurements in Full-scale Flight, Research Mem. H58E28, National Advisory Committee for Aeronautics, Washington, DC, 1958
31. Boermans, L. M. M. and Selen, J. J. W., On the Design of Some Airfoils for Sailplane Application, VTH-LR-326, Delft Univ. of Technology, Dep. Aerospace Eng., 1981
32. Davies, Handel, Some Aspects of Flight Research, J R. Aeronaut. Soc., Vol. 55, pp. 325-361, 1951
33. Holmes, Bruce J., Obara, Clifford J., Gregorek, Gerald M., Hoffman, Mi-chael J., and Freuhler, Rick J., Flight Investigation of Natural Laminar Flow on the Bellanca Skyrocket II, SAE Paper 830717, 1983
34. 夏樹仁,飛行工程概論─機翼概論-升力與阻力,第六章第1-7頁,全華科技圖書股份有限公司,台北巿, 2003
35. Abbott, Ira H. and von Doenhoff, Albert E., Families of Wing Section. Theory of Wing Sections, Dover Publications, New York, pp. 111-123, 1958
36. 吳嘉容,尾流場波動渦漩列對俯仰機翼流場之影響分析,碩士論文,國立中興大學機械工程研究所,台中巿,1997
37. Hussian, A. K. M. F. and Reynolds, W. C., The mechanics of an organ-ized wave in turbulent shear flow, J. Fluid Mech., Vol. 41, Part 2, pp. 241-258, 1970
38. Choudhuri, P. G., Knight, D. D., and Visbal, M. R., Two-Dimensional Unsteady Leading-Edge Separation on a Pitching Airfoil, AIAA Journal, Vol. 32, No. 4, pp. 673-681, 1994
39. Khan, F. A. and Mueller, T. J., Tip Vortex/Airfoil Interaction for a Low Reynolds Number Canard/Wing Configuration, Journal of Aircraft, Vol. 28, No. 3, pp. 181-186, 1991
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top