跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/01 09:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉豐傑
研究生(外文):Fong-Jey Liu
論文名稱:以混合式碳化矽IGBT改善變頻器效率之應用
論文名稱(外文):Inverter Efficiency Improvement Using Mixed Silicon Carbide IGBT
指導教授:李永勳
指導教授(外文):Yuang-Shung Lee
口試委員:王見銘陶金旺李永勳
口試委員(外文):Wang,Chien-MingTao,Chin-WangYuang-Shung Lee
口試日期:2015-10-01
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士在職專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:59
中文關鍵詞:快速恢復二極體碳化矽變頻器載波頻率
外文關鍵詞:Freewheeling diodesSilicon carbideinvertercarrier frequency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
在電力電子電路中,快速恢復二極體(FWD)的應用對整體系統來說有著越來越重要的地位與作用。傳統以純矽材料的FWD技術發展已達到成熟階段。在工業上的開關系統和控制上的應用,它已經發展到了極致。然而現在功率系統發展到更高功率密度,更高頻率特性時對FWD的要求也將隨之而增加。碳化矽(Silicon Carbide,SiC)為一種新型的半導體材質有更高的頻率,減少了開關損耗,比矽材料具有更高的工作溫度等特點,給高功率系統帶來新的發展契機,本論文既針對變頻器使用之功率元件IGBT進行比較與分析,藉由比較IGBT之FWD以矽材質及碳化矽材質於變頻器上在不同載波頻率設定與輸出電流下之損耗,來驗證碳化矽材質FWD對變頻器整體效率的提升與改善。
In the applications of power electronic systems, the role of the application to whole system in Freewheeling diodes (FWD) is becoming more important recently. Traditional technology on pure Silicon FWD development had reached the mature stage. Silicon carbide is a new kind of material used in semiconductor. It has many features such as higher working frequency, lower switching losses and higher working temperature comparing with the Silicon device. These features bring new development opportunities in high power systems. This paper has compared and analyzed the IGBT component which used in the inverter system. By comparing the losses of output current under different carrier frequency in inverter system between silicon and silicon carbide device, the improvement on efficiency of inverter which used silicon carbide FWD can be verified.
摘要 i
英文摘要 ii
目錄 iii
表目錄 V
圖目錄 V
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機與貢獻 2
1.4 論文內容 3
第二章 變頻器系統介紹 5
2.1 前言 5
2.2 變頻器架構 5
2.2.1 變頻器的原理與優點 6
2.3 變頻器控制原理 7
2.4 變頻器種類 10
2.4.1 變頻器的結構特徵 11
2.5 ]IGBT規格與特性 12
2.5.1 IGBT構造 12
2.5.2 IGBT用途和特徵 13
2.6 IGBT動作原理與特性 14
2.6.1 IGBT的導通與關斷 14
2.6.2 IGBT的靜態特性 14
2.7 本章結論 16
第三章 變頻器的功率損耗 17
3.1 前言 17
3.2 IGBT的損耗 17
3.2.1 IGBT導通損耗 18
3.2.2 IGBT切換損耗 19
3.2.3 IGBT的FWD損耗 21
3.3本章結論 22
第四章 碳化矽功率元件材質特性分析 23
4.1 前言 23
4.2碳化矽材質介紹 23
4.3碳化矽材質IGBT-SBD特性 26
4.3.1 元件結構和特徵 27
4.4 SIC-SBD與ZVS/ZCS控制的差異與特性 32
4.4.1 傳統硬性切換 32
4.4.2 ZVS/ZCS控制柔性切換 33
4.5 本章結論 35
第五章 硬體系統架構及實驗結果 36
5.1 前言 36
5.2實驗過程 36
5.2.1實驗架構 36
5.2.2實驗方式 38
5.3實驗結果 39
5.3.1反向恢復電流IC 39
5.3.2 VCE與IC交越功率Pmax 42
5.3.3 VCE與IC交越能量損失 45
5.3.4變頻器運轉之效率百分比 47
5.3.5變頻器運轉之損耗功率 51
5.4 本章結論 54
第六章 結論與未來展望 55
6.1 結論 55
6.2 未來展望 56
參考文獻 57

[1] 黃韋誠,「以弦波脈衝寬度調變驅動無刷直流馬達」,碩士論文,南台科技大學,台南市,2013。
[2] H. W. van Der Broeck, H. Skudelny, and G. V. Stanke, “Analysis and real-ization of a pulse width modulation based on voltage space vectors,” Proceedings, IEEE Industry Applications Society, vol. 24, issue 1, pp. 142-150, Jan. 1988.
[3] 何敦逸,「電流源型變頻器研製」,碩士論文,國立台灣科技大學,台北市, 2003。
[4] 王仁裕,「泛用型數位變頻器」,碩士論文,國立中山大學,高雄市,2000。
[5] 蕭永茗,「利用線性零組件建構絕緣閘雙極性電晶體」,碩士論文,國立中央大學,桃園縣,2012。
[6] J. Qian, A. Khan, and I. Batarseh, “Turn-off switching loss model and analysis of IGBT under different switching operation modes,” Proceedings, 21st International Conference on Industrial Electronics Control and instrumentation, vol. l, pp. 240-245, Nov. 1995.
[7] J. Sigg, P. Turkes, and R. Kraus, “Parameter extraction methodology and validation for an electro-thermal physics-based NPT-IGBT model,” Proceedings, IEEE Industry Applications Conference, pp. 1166-1173, Oct. 1997.
[8] 陳駿傑,「IGBT的微流道散熱分析與最佳化設計」,碩士論文,國立交通大學,新竹市,2011。
[9] 沈文棋,「模組化數位變頻器系統之開發」,碩士論文,國立清華大學,新竹市,2006。
[10] 王順忠,電機機械原理精析,東華書局,台灣,2015。
[11] 毛鵬、謝少軍和許澤剛,「IGBT模塊的開關暫態模型及損耗分析」,中國電機工程學報,第30卷,第15期,第40-47頁,2010。
[12] S. C. Das, G. Narayanan, and A. Tiwari, “Experimental study on the dependence of IGBT switching energy loss on DC link voltage,” Proceedings, 2014 IEEE International Conference on Power Electronics, Drives and Energy Systems, pp. 1-5, Dec. 2014.
[13] F. Blaabjerg, U. Jaeger, and S. Munk-Nielsen, “Power losses in PWM-VSI inverter using NPT or PT-IGBT devices,“ IEEE Trans. on Power Electronics, vol. 10, no. 3, pp. 358-367, May 1995.
[14] L. Pan, L. V. Guangyao, Y. Dong, and C. Zhang, “Electric vehicle drive-charge integrated system motor controller power loss calculation and temperature rising analysis,” Proceedings, IEEE Conference and Expo Transportation Electrification Asia-Pacific, pp. 1-5, Aug. 2014.
[15] G. Zou and Z. Zhao, “Research on impacts of different parameters on transient power loss of IGBT,” Proceedings, International Conference on Electrical Machines and Systems (ICEMS) , pp. 490-495, Oct. 2013.
[16] H. Wang, O. Ikawa, S. Miyashita, T. Nishimura, and S. Igarashi, “1700 V Si-IGBT and SiC-SBD hybrid module for AC690 V inverter system,” Proceedings, International Conference on Power Electronics, pp. 3702-3706, Nov. 2014.
[17] H. Mine, Y. Matsumoto, R. Yamada, K. Mino, H. Kimura, Y. Kondo, and Y. Ikeda, “Characteristics of the power electronics equipments applying the SiC power devices,” Proceedings, International Conference on Power Engineering and Renewable Energy (ICPERE), pp. 1-6, July 2012.
[18] S.-H. Ryu, C. Capell, L. Cheng, C. Jonas, A. Gupta, M. Donofrio, J. Clayton, M. O'Loughlin, A. Burk, D. Grider, A. Agarwal, J. Palmour, A. Hefner, and S. Bhattacharya, “High performance, ultra high voltage 4H-SiC IGBTs,” Proceedings, IEEE Energy Conversion Congress and Exposition (ECCE), pp. 3603-3608 , Sep. 2012.
[19] K. Ishikawa, K. Ogawa, S. Yukutake, N. Kameshiro, and Y. Kono, “Traction inverter that applies compact 3.3 kV / 1200 A SiC hybrid module,” Proceedings, International Conference on Power Electronics, pp. 2140-2144, May 2014.
[20] 盛況、郭清、張軍明和錢照明,「碳化矽電力電子器件在電力系統的應用展望」。中國電機工程學報,第32卷,第30期,第1-7頁,2012年。
[21] 「驅動碳化矽開關元件」,http://www.compoundsemiconductortaiwan.net/PDF/2013/03/CS_Features1.pdf, 2013.
[22] S. M. Sze and K. K. Ng, Physics of semiconductor devices, 3rd ed. Wiley Interscience, 2007.
[23] J. Rabkowski, D. Peftitsis, and H.-P. Nee, “Silicon carbide power transistors: a new era in power electronics is initiated,” IEEE Industrial Electronics Magazine, vol. 6, issue 2, pp. 17-26, June 2012.
[24] 趙斌、秦海鴻、文教普、馬婷和嚴仰光,「商用碳化矽電力電子器件及其應用研究進展」, http://www.p-e-china.com/neirjz.asp?newsid=16403, 2012.
[25] 黃敬涵,「SiC的產業應用」,EEPW電子產品世界論壇, http://forum.eepw.com.cn/thread/252417/1, 2014.
[26] B. J. Baliga, Fundamentals of power semiconductor devices, Springer, 2008.
[27] W. Su, J. Liu, X. Wen, W. Sun, and X. Tai, “A high power density inverter with hybrid SiC module,” Proceedings, IEEE Conference and Expo Transportation Electrification Asia-Pacific, , pp. 1-4, Aug. 2014.
[28] 林彥均,「高效能變頻器之研製」,碩士論文,國立宜蘭大學,宜蘭市,2007。
[29] 簡仲毅,「應用於充磁機之交錯式全橋相移電流源變頻器研製」,碩士論文,國立臺灣科技大學,2011。
[30] G. Ivensky, I. Zeltser, A. Kats, and S. Ben-Yaakov, “Reducing IGBT losses in ZCS series resonant converters,” IEEE Trans. on Industrial Electronics, vol. 46, issue 1, pp. 67-74, Feb. 1999.
[31] F. C. Lee, “High frequency quasi-resonant converter technologies,” Proceedings of the IEEE, pp. 377-390, Apr. 1988.
[32] W. MeMurray, “Resonant snubbers with auxiliary switches,” Proceedings, Conference Record of the IEEE Industry Applications Society Annual Meeting, pp. 829-834, Oct. 1989.
[33] R. W. De Donker and J. P. Lyons, “The auxiliary resonant commutated pole converter,” Proceedings, Conference Record of the IEEE Industry Applications Society Annual Meeting, pp. 1228-1235, Oct. 1990.
[34] 黃智方、張庭輔,「氮化鎵功率元件簡介」,電子資訊專刊,第20卷,第1期,第30-40頁,2014。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top