跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.36) 您好!臺灣時間:2025/12/10 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾逸璿
研究生(外文):Yi-Hsuan Tseng
論文名稱:利用3D粒線體形態分析得知細胞週期中的粒線體品質控管與生成機制
論文名稱(外文):3D Mitochondrial Morphological Analysis Reveals Mitochondrial Biogenesis and Quality Control in Cell Cycle
指導教授:彭智楹
指導教授(外文):Jyh-Ying Peng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物醫學資訊研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:35
中文關鍵詞:3D粒線體形態學影像分析高含量分析細胞週期
外文關鍵詞:3D Mitochondrial morphologyImage ProcessingHigh content analysisCell cycle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:605
  • 評分評分:
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:0
粒線體的型態與粒線體的功能具有高度的相關性。在細胞週期中,粒線體的型態與功能隨著細胞週期的不同而改變,這些改變通常也反映特殊的生理條件。在細胞分裂的過程,粒線體會隨著時間變成高度融合的型態以提高粒線體的活性,產生足夠的能量提供細胞分裂使用。

為了分析粒線體在三度空間下的型態變化,我們發展了一套高含量分析系統分析共軛焦顯微鏡所擷取的 normal rat kidney細胞 (NRK cells) 粒線體,利用影像的螢光亮度切割出粒線體的位置,並計算粒線體的體積、緊密度等等各種不同的形態特徵值。接著利用計算得到的粒線體型態特徵值將粒線體分成五種不同的子型態。並利用擷取的各種細胞層級的特徵值,以Kolmogorov-Smirnov Test 比較細胞週期之間的差異。

從計算的結果顯示,細胞中粒線體的總體積從G0開始不斷的增加,到 S 時期變成兩倍,但緊接著的 G2 時期突然驟降成原本的體積,並在M時期稍微提高。但粒線體的截面積在M時期並沒有上升,表示粒線體的體積上升,並不是因為粒線體即將啟動自我吞噬的膨脹造成。另外螢光亮度在這段時期中沒有明顯變化,也表示粒線體在這個過程中沒有自我吞噬導致粒線體的螢光蛋白轉移。因此我們推論,G0 時期到S時期,與 G2 到 M 時期的粒線體體積上升,主要是因為粒線體的生成造成,而不是因為粒線體的自噬行為產生。而在G2時期的粒線體體積下降,可能是由於粒線體為了在進入細胞分裂之前,維持並更新粒線體的功能,因此在G2時期產生大量的分裂與粒線體自我吞噬,使粒線體保持完整的功能。

我們的系統可以自動化的計算NRK細胞週期中粒線體型態變化與特徵值,並將粒線體分類成五種子型態。另外,透過我們的系統可以找到粒線體在細胞週期中有生質合成與品質控管的行為,從這份研究顯示,粒線體的型態可以做為潛在的細胞週期生物標記。

The function of mitochondria is highly correlated with mitochondrial morphology. Mitochondrial morphology and functions change during cell cycle, and these changes usually imply specific physiological conditions. In the mitotic phase, mitochondria become hyperfused to reach maximal activity.

To analyze mitochondrial 3D morphological changes, we established a high content analysis system to apply to normal rat kidney cell image stacks. By using our system, we calculated mitochondrial morphological features to classify mitochondria into 5 different subtypes. And we extracted various cell-level mitochondrial morphological features to find the difference between cell cycle steps.

In this study, we found the total mitochondrial volume increased to two-fold from G0 phase to S phase, abruptly drops to original size at G2 phase, and then increased again at M phase. Changes in mitochondrial cross section area and fluorescence intensity of fluorescence-tagged mitochondrial proteins show that the volume increase is not due to swelling of dysfunctional mitochondria. This indicated that mitochondrial biogenesis occurred at the transition from G0 phase to S phase and from G2 phase to M phase. Decrease of mitochondrial volume at G2 phase implies that mitochondrial quality control occurs at G2 phase.

By classifying mitochondria into 5 representative morphological subtypes our system reveals specific mitochondrial morphological composition in different cell cycle steps of natural rat kidney cells. Moreover, using our system, we discovered that there are two phases of mitochondrial biogenesis and one phase of quality control during cell cycle implied by cell-level feature analysis. In this study, we show that mitochondrial morphology can be a potential biomarker for cell cycle.

內容
中文摘要 iv
Abstract v
1. 緒論 1
1.1. 粒線體 1
1.2. 粒線體功能與型態 2
1.3. 粒線體型態與功能在細胞週期的改變 5
1.4. 粒線體定量分析 6
2. 研究目標 7
3. 材料與方法 8
3.1. 影像來源 8
3.2. 影像前處理 11
3.3. 影像分割 13
3.4. 特徵值擷取 16
3.5. 高斯混合模型 22
4. 結果 23
4.1. 使用高斯混合模型之分群結果 23
4.2. 各個細胞週期之粒線體子型態 25
4.3. 盒狀圖與統計分析 26
4.4. 多元尺度分析 28
4.5. 支持向量機 29
5. 討論 32
6. 參考文獻 33
7. 附錄 i

圖 1: 粒線體藉由融合與分裂來互補受損的粒線體DNA(Youle and van der Bliek, 2012) 2
圖 2: 粒線體動力學失能導致神經元病變(Chen and Chan, 2009) 4
圖 3: Mitra Kasturi拍攝之螢光影像 8
圖 4: 細胞週期控制流程(Mitra et al., 2009) 10
圖 5: 以Median Filter模糊化處理後的圖 11
圖 6: 利用內插法計算每張螢光影像之間的變化量。 12
圖 7: Otsu法與ALT切割方法使用於2D螢光影像之比較(Peng et al., 2010) 14
圖 8: 切割方法之比較。 15
圖 9: 3D 12-Subiteration Thinning Algorithm所使用的樣板(Palágyi and Kuba, 1999) 17
圖 10: 骨架化之結果比較。 18
圖 11: 以貝氏資訊準則比較高斯混合模型之收斂結果 23
圖 12: 粒線體子型態 25
圖 13: 細胞週期與其粒線體子型態。 26
圖 14: 粒線體特徵值之盒狀圖與統計分析結果 27
圖 15: 粒線體特徵值之盒狀圖與統計分析結果 28
圖 16: 多元尺度分析之分類結果 29

表 1: 細胞影像數量 10
表 2: 細胞層級粒線體形態特徵值 20
表 3: 粒線體形態特徵值 21
表 4: 使用高斯混合模型之分群結果 24
表 5: 3D粒線體子型態 25
表 6: SVM結果之混淆矩陣(Confusion Matrix) 30
表 7 個別細胞週期之SVM準確率 31
Almsherqi, Z., Margadant, F., and Deng, Y. (2012). A look through ‘lens’ cubic mitochondria. Interface Focus 2, 539-545.
Arakaki, N., Nishihama, T., Owaki, H., Kuramoto, Y., Suenaga, M., Miyoshi, E., Emoto, Y., Shibata, H., Shono, M., and Higuti, T. (2006). Dynamics of mitochondria during the cell cycle. Biological &; pharmaceutical bulletin 29, 1962-1965.
Arganda‐Carreras, I., Fernández‐González, R., Muñoz‐Barrutia, A., and Ortiz‐De‐Solorzano, C. (2010). 3D reconstruction of histological sections: Application to mammary gland tissue. Microscopy research and technique 73, 1019-1029.
Bribiesca, E. (2008). An easy measure of compactness for 2D and 3D shapes. Pattern Recognition 41, 543-554.
Chang, C.-C., and Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST) 2, 27.
Chen, H., and Chan, D.C. (2009). Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Human molecular genetics 18, R169-176.
Clay, H.B., Sillivan, S., and Konradi, C. (2011). Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. International Journal of Developmental Neuroscience 29, 311-324.
Corrado, M., Scorrano, L., and Campello, S. (2012). Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory diseases. International journal of cell biology 2012, 729290.
Delaval, B., Ferrand, A., Conte, N., Larroque, C., Hernandez-Verdun, D., Prigent, C., and Birnbaum, D. (2004). Aurora B-TACC1 protein complex in cytokinesis. Oncogene 23, 4516-4522.
Dorn, G.W., 2nd (2013). Mitochondrial dynamics in heart disease. Biochimica et biophysica acta 1833, 233-241.
Duchen, M.R. (2004). Mitochondria in health and disease: perspectives on a new mitochondrial biology. Molecular aspects of medicine 25, 365-451.
Gear, A.R., and Bednarek, J.M. (1972). Direct counting and sizing of mitochondria in solution. The Journal of cell biology 54, 325-345.
Gonzalez, R.C., Woods, R.E., and Eddins, S.L. (2009). Digital image processing using MATLAB, Vol 2 (Gatesmark Publishing Knoxville).
Green, D.R., and Reed, J.C. (1998). Mitochondria and apoptosis. Science 281, 1309-1312.
Haralick, R.M., Shanmugam, K., and Dinstein, I.H. (1973). Textural features for image classification. Systems, Man and Cybernetics, IEEE Transactions on, 610-621.
Heng, Y.-W., and Koh, C.-G. (2010). Actin cytoskeleton dynamics and the cell division cycle. The international journal of biochemistry &; cell biology 42, 1622-1633.
Hoppins, S., and Nunnari, J. (2012). Cell Biology. Mitochondrial dynamics and apoptosis--the ER connection. Science 337, 1052-1054.
Jin, S. (2006). Autophagy, mitochondrial quality control, and oncogenesis. Autophagy 2, 80-84.
Koopman, W.J., Nijtmans, L.G., Dieteren, C.E., Roestenberg, P., Valsecchi, F., Smeitink, J.A., and Willems, P.H. (2010). Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxidants &; redox signaling 12, 1431-1470.
Kunda, P., Pelling, A.E., Liu, T., and Baum, B. (2008). Moesin Controls Cortical Rigidity, Cell Rounding, and Spindle Morphogenesis during Mitosis. Current Biology 18, 91-101.
Lee, T.-C., Kashyap, R.L., and Chu, C.-N. (1994). Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graphical Models and Image Processing 56, 462-478.
Liu, X., Weaver, D., Shirihai, O., and Hajnóczky, G. (2009). Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion–fission dynamics. The EMBO journal 28, 3074-3089.
Lowell, B.B., and Shulman, G.I. (2005). Mitochondrial dysfunction and type 2 diabetes. Science 307, 384-387.
Maechler, P., Carobbio, S., and Rubi, B. (2006). In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. The international journal of biochemistry &; cell biology 38, 696-709.
Manatt, M., and Chandra, S.B. (2011). The effects of mitochondrial dysfunction in schizophrenia. J Med Genet Genom 3, 84-94.
Martínez-Diez, M., Santamaría, G., Ortega, Á.D., and Cuezva, J.M. (2006). Biogenesis and dynamics of mitochondria during the cell cycle: significance of 3′ UTRs. PloS one 1, e107.
Mitra, K., Wunder, C., Roysam, B., Lin, G., and Lippincott-Schwartz, J. (2009). A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proceedings of the National Academy of Sciences of the United States of America 106, 11960-11965.
Murata-Hori, M., Tatsuka, M., and Wang, Y.-L. (2002). Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Molecular biology of the cell 13, 1099-1108.
Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. Systems, Man and Cybernetics, IEEE Transactions on 9, 62-66.
Palágyi, K., and Kuba, A. (1999). A Parallel 3D 12-Subiteration Thinning Algorithm. Graphical Models and Image Processing 61, 199-221.
Peng, J.-Y., Chung-Chih, L., and Chun-Nan, H. (2010). Adaptive Image Enhancement for Fluorescence Microscopy. Paper presented at: Technologies and Applications of Artificial Intelligence (TAAI), 2010 International Conference on.
Pollack, R., and Rifkin, D.B. (1976). Modification of mammalian cell shape: Redistribution of intracellular actin by SV40 virus, proteases, cytochalasin B and dimethylsulfoxide. Cell Motility Book A 389, 403.
Reis, Y., Bernardo-Faura, M., Richter, D., Wolf, T., Brors, B., Hamacher-Brady, A., Eils, R., and Brady, N.R. (2012). Multi-parametric analysis and modeling of relationships between mitochondrial morphology and apoptosis. PloS one 7, e28694.
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics 6, 461-464.
Shepherd, G.M., and Harris, K.M. (1998). Three-dimensional structure and composition of CA3-->CA1 axons in rat hippocampal slices: implications for presynaptic connectivity and compartmentalization. The Journal of neuroscience : the official journal of the Society for Neuroscience 18, 8300-8310.
Twig, G., Elorza, A., Molina, A.J., Mohamed, H., Wikstrom, J.D., Walzer, G., Stiles, L., Haigh, S.E., Katz, S., and Las, G. (2008). Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. The EMBO journal 27, 433-446.
Youle, R.J., and van der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337, 1062-1065.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top