跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/12 05:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家瑋
研究生(外文):Jia-Wei Chang
論文名稱:綠豆澱粉分支酶Ⅰ在大腸桿菌系統之表現與特性分析
論文名稱(外文):Characterization and expression of mungbean (vigna radiata L.) starch branching enzyme I (vrsbe I) cDNA in E. coli system
指導教授:柯源悌
指導教授(外文):Yuan-Tih Ko
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:110
中文關鍵詞:澱粉分支酶大腸桿菌表現
外文關鍵詞:starch branching enzymeexpression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
澱粉分支酶(SBE, EC 2.4.1.18)在支鏈澱粉(amylopectin)的合成上扮演重要的角色,先前已經在綠豆(Vigna radiate, cv. Tainan no. 5)中選殖出其全長之SBEⅠ cDNA(取名為VrsbeⅠ)。以生物資訊軟體預測其蛋白質3D立體結構以及特異性胺基酸序列,在Swiss PDB資料庫中比對只尋找到唯一的模板,E. coli glycogen synthase (GS) 其資料庫ID為1m7x;VrsbeⅠ對E. coli GS有27.4%的相似性,因此僅預測出VrSBEⅠ胺基酸序列中的34.3%之立體結構。在預測出之立體結構區域,在(α/β)8 domain上的八個保守性催化殘基中共有六個位於此區域。此外以REMUS互相比較綠豆之異構酶序列,可以找到VrSBEⅠ上的特異性序列,而此特異性序列則有潛力作為抗體單一性辨識VrSBEⅠ之結合位置。經定序確認過質體pET-30 EK/LIC-VrsbeI正確性後,質體轉形於表達宿主BL21(DE3)pLysS中,於LB培養液進行培養,並由IPTG誘導,誘導出目標蛋白質rVrSBEⅠ預估大小為89 kDa,而誘導時另外添加1%葡萄糖則可以減少宿主之本底表達(basal expression)。粗萃蛋白質進行amylose branching assay分析酵素活性,可於波長660位置見到吸光值之下降,顯示重組蛋白質具有SBE活性。以親和性層析管柱HisTrapTM將目標蛋白質純化,獲得之純化蛋白質其比活性為314.63 U/mg,純化倍率為114倍。
Starch branching enzyme(SBE, EC 2.4.1.18)is one of the enzymes vital for amylopectin synthesis. The sequence of the previously obtained full-length cDNA of mungbean (Vigna radiate, cv. Tainan no. 5) SBEⅠ (named VrsbeⅠ) was confirmed and cloned. Its 3-D structures and functional features were predicted in silico with the only template, E. coli glycogen synthase (GS), 1m7x, by Swiss Model and REMUS. There is 27.4% amino acid sequence of VrSBEⅠ homologous to E. coli GS, in which 34.3% 3D structure of VrSBEⅠ was predicted. Six of the 8 conserved catalytic residues within the (α/β)8 domain of the α-amylase family in VrSBEⅠ were located in the structure. When using REMUS to compare amino acid sequences between two VrSBE isoforms, there were found to be potential epitope regions which are able to be bound specifically by antibodies. After confirming codon correctness by sequencing, VrsbeⅠ was cloned into pET-30 EK/LIC expression vector. The pET-30 EK/LIC-VrsbeI was expressed in BL21(DE3)pLysS cells in standard LB broth and the protein was induced by IPTG. The recombinant enzyme, rVrSBEⅠ, had His-tag and S-tag at the N terminal with an estimated molecular mass of 89 kDa. When Supplied with an extra 1% Glucose as carbon source during induction, it was able to decrease basal protein expression in the E. coli host. The crude cell extract possessing branching enzyme catalytic activities that decrease the A660 absorbance of amylose-iodine complex indicated that rVrSBEⅠ protein would be expressed as an active form. The crude extract was purified by HisTrapTM affinity chromatography. The activity of the purified rVrSBEI was also assayed by amylose branching assay. The decrease of the absorbance at A660 exhibited the specific activity of rVrSBEI was 314.6 U/mg and the purity has enriched 114-fold.
總目錄
總目錄………………………………………………………………Ⅳ
圖目錄………………………………………………………………Ⅵ
表目錄………………………………………………………………Ⅹ

中文摘要...................................................1
英文摘要...................................................2
第一章 序論.........................................................3
第一節 澱粉生合成作用......................................3
1.1 澱粉的組成及結構.......................................3
1.2 澱粉的生合成與參與酵素.................................4
第二節 澱粉分支酶之分子生物學研究..........................6
2.1 澱粉分支酶分別為famility A與B二大類....................7
第三節 綠豆簡介...........................................10
第四節 sbeⅠ、sbeⅡ特性差異...............................13
第五節 研究起源與目的.....................................14
第二章 材料與方法.........................................15
第一節 材料........................................................15
1.1 樣品..................................................15
1.2 藥品..................................................16
1.3 儀器設備..............................................17
第二節 實驗流程設計.......................................19
第三節 聚合酶連鎖反應.....................................20
第四節 核酸電泳分析法.....................................26
第五節 DNA片段之純化方法.................................27
第六節 EK/LIC pET-30 Vector之轉殖.........................29
第七節 Plasmid DNA之抽取..................................35
第八節 DNA序列定序........................................36
第九節 重組蛋白質誘導流程.................................37
第十節 表現蛋白質的分析...................................38
10.1 表現蛋白質的萃取與純化...............................38
A. 萃取蛋白質......................................38
B. 純化蛋白質......................................41
10.2 表現蛋白質的定量.....................................44
10.3 表現蛋白質的電泳分析.................................44
10.4 蛋白質染色法.........................................47
第十一節 SBE活性測試......................................48
Amylose-branching assay.............................48
第三章 結果與討論.........................................50
A. VrSBEⅠ胺基酸序列結構預測.......................50
B. VrsbeⅠ之PCR量化與片段純化......................52
C. 質體挑選與定序..................................53
D. 目標蛋白質表現與萃取............................55
E. 目標蛋白質之純化................................57
F. rVrSBEⅠ活性分析................................60
第四章 總結...............................................62
第五章 結果圖表...........................................63
第六章 附圖與表...........................................93
參考文獻.................................................100

圖目錄
圖一、澱粉的分支結構......................................93
圖二、DBE澱粉去分支酶在支鏈澱粉生合成功能被提出之作用模型.94
圖三、澱粉的生合成由光合作用產物蔗糖開始的路徑圖..........95
圖四、各物種sbe及其基因家族….............................96
圖五、VrsbeI cDNA及其演繹出之胺基酸序列對照...............98
圖六、KOD Hot Start DNA polymerase正確性及合成速率比較....21
圖七、常使用的hot start systems其專一性及靈敏度比較.......22
圖八、pET-30 EK/LIC載體結構圖.............................33
圖九、EK/LIC insert黏合示意圖.............................34
圖十、E. coli glycogen synthase之3D立體結構作為預測VrSBEⅠ的模板......................................................63
圖十一、VrSBEⅠ之unique sequences相對應於其3D立體預測結構上之位置....................................................63
圖十二、E. coli GS及VrSBEⅠ中心催化區域保留性殘基之3D結構圖........................................................64
圖十三、以REMUS比對出獨特loop之胜肽鏈於預測結構上之位置圖........................................................65
圖十四、使用不同原始VrsbeⅠcDNA模板含量以F9及R21引子進行PCR擴增之產物電泳圖..........................................66
圖十五、VrsbeⅠ以LIC引子進行插入子片段之二次PCR擴增及其一次PCR產物自膠體萃取純化出單一片段當作二次PCR模板之電泳圖....67
圖十六、PCR clean up純化由VrsbeⅠ以LIC引子所PCR擴增產物之電泳圖......................................................68
圖十七、膠體純化之VrsbeⅠ/LIC插入片段接合入pET-30 EK/LIC載體後轉形至選殖宿主Novablue獲得之positive clone..............69
圖十八、PCR clean up純化之VrsbeⅠ/LIC插入片段接合入pET-30 EK/LIC載體後轉形至選殖宿主Novablue獲得之positive clone....69
圖十九、兩種插入子純化方法所獲之Novablue positive colonies的劃線培養........................................................70
圖二十、由14個positive colonies抽取plasmid DNA進行電泳分析圖........................................................71
圖二十一、含有質體DNA大小在6~8 kbp組之positive colonies的劃線培養........................................................72
圖二十二、以限制酶切割確認帶有VrsbeⅠ postive clone之質體.73
圖二十三、四組positive clone之質體DNA以LIC primers進行PCR量化確認之電泳圖............................................74
圖二十四、VrsbeⅠ序列內部不同之引子組對pET-30 EK/LIC- VrsbeⅠ進行不同片段大小量化確認之電泳圖........................75
圖二十五、pET-30 EK/LIC-VrsbeⅠ-1定序結果與VrsbeⅠ序列進行並列比對....................................................77
圖二十六、pET-30 EK/LIC-VrsbeⅠ-2定序結果與VrsbeⅠ序列進行並列比對....................................................79
圖二十七、、pET-30 EK/LIC-VrsbeⅠ-1轉譯出之胺基酸序列與VrsbeⅠ之胺基酸序列進行並列比對................................80
圖二十八、pVrsbeⅠ-2轉形至表達宿主BL21 (DE3) pLysS之positive clone培養皿......................................81
圖二十九、隨機挑選六個positive colony之劃線次培養.........81
圖三十、挑選BL21 (DE3) pLysS的六個positive colonies以LIC引子對進行colony PCR 確認pVrsbeⅠ轉形之電泳圖.................82
圖三十一、不同培養液成份對重組蛋白質rVrSBEⅠ表現之電泳分析83
圖三十二、不同濃度IPTG誘導濃度對重組蛋白質rVrSBEⅠ表現之電泳分析......................................................85
圖三十三、以BugBuster及sonication方法萃取之粗萃重組蛋白質之電泳圖....................................................86
圖三十四、利用注射針筒方式將粗萃蛋白質樣品以HisTrapTM HP管柱純化後收集區分以Silver Staining染色之電泳圖...............87
圖三十五、以HisTrapTM HP管柱於AKTA prime層析系統進行重組蛋白質rVrSBEⅠ純化之層析圖譜..................................88
圖三十六、以HisTrapTM HP管柱於AKTA prime層析系統進行重組蛋白質rVrSBEⅠ純化所收集之區分的coomassie blue staining電泳圖.89
圖三十七、以HisTrapTM HP管柱於AKTA prime層析系統進行重組蛋白質rVrSBEⅠ純化所收集之區分的Silver Staining電泳圖.........90
圖三十八、粗萃重組蛋白質rVrSBEⅠ以amylose branching assay之活性測試..................................................91
圖三十九、純化後之重組蛋白質rVrSBEⅠ以amylose branching assay之活性測試...........................................92

表目錄
表一、VrSBE與其他物種BE的胺基酸序列保守性區域列表.........99
表二、VrSBE與其他物種BE的胺基酸序列保守性區域列表.........99
表三、E. coli GS與VrSBEⅠ保守性活性催化殘基位置列表......100
表四、本探討之VrsbeⅠ所使用的基因特異性引子列表...........65
表五、不同IPTG誘導濃度之BL21 (DE3) pLysS細胞之pellet濕重與soluble protein濃度.......................................84
表六、rVrSBEⅠ純化表......................................92
中藥大辭典(1985)新文豐出版社(台北)。
張敬宜(2002)綠豆澱粉分支酵素的鑑定。中國醫藥大學營養學研究所碩士論文。
石韻琦 (2004) 綠豆澱粉分支酶cDNA之選殖與特性分析。中國醫藥大學營養學研究所碩士論文。
翁廷賜和賴森雄 (1992) 粉綠豆新品種台南五號之育成。行政院農業委員會台南區農業改良場 研究彙報第28號。
吳昭慧和連大進 (1996) 綠豆。少量多樣化雜糧作物栽培手冊。台灣省政府農林廳。
Abad M.C., Binderup K., Rkos-Steiner J., Arni R.K., Preiss J., Geiger J.H. (2002) The X-ray crystallographic structure of Escherichia coli branching enzyme. J. Biol. Chem. 277: 42164-42170.
AVRDC (1975) Chemical analysis of mungbean seeds. Asian Vegetable Research and Development Center. Progress report, Shanhua, Taiwan; AVRDC.
Baba T., Kimura K., Mizuno K., Etoh H., Ishida Y., Shida O., Arai Y. (1991) Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzymeⅠ. Biochem. Biophys. Res. Commun, 181: 87-94.
Baecker P.A., Greenberg E., Preiss J. (1986) Biosynthesis of bacterial glycogen. Primary structure of E. coli 1, 4-alpha-D-glucan: 1, 4-alpha-D-glucan 6-alpha-D-(1, 4-alpha-D-glucano)-transferase as deduced from the nucleotide sequence of the glg B gene. J. Biol. Chem. 261: 8738-8743.
Ball S., Guan H.P., James M., Myers A., Keeling P., Mouille G., Buleon A., Colonna P., Preiss J. (1996) From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86: 349-352.
Bhattacharyya M.K., Smith A.M., Ellis T.H.N., Hedley C., Martin C. (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding stach-branching enzyme. Cell 60: 115-122.
Binderup K, Mikkelsen R, Preiss J. (2002) Truncation of the amino terminus of branching enzyme changes its chain transfer pattern. Arch. Biochem. Biophys. 397: 279-285.
Boyer C.D., Preiss J. (1978a) Multiple forms of α1-4-α-D-glucan 6-glucosyl transferase from developing Zea mays L. kernels. Carbohydr. Res. 61: 321-324.
Boyer C.D., Preiss J. (1978b) Multiple forms of starch branching enzyme of maize: evidence for independent genetic control. Biochem. Biophys. Res. Commun. 80: 160-175.
Burton R.H., Bewley J.D., Smith A.M., Bhattacharyya M.K., Tatge H., Ring S., Bull V., Hamilton W.D.O., Martin C. (1995) Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 7: 3-15.
Cao H., James M.G., Myers A.M. (2000) Purification and characterization of soluble starch synthases from maize endosperm. Arch. of Biochem. Biophys. 373: 135-146.
Cid E., Geremia R.A., Guinovart J.J., Ferrer J.C. (2002) Glycogen synthase: towards a minimum catalytic unit? FEBS Lett. 528: 5-11.
Edwards A., Marshall J., Sidebottom C., Visser R.G.F., Smith A.M., Martin C. (1995) Biochemical and molecular characterization of a novel starch synthase from potato tubers. Plant J. 8: 283-294.
Emes M.J., Bowsher C.G., Hedley C., Burrel M.M., Scrase-Field E.S.F., Tetlow I.J. (2003) Starch synthesis and carbon partitioning in developing endosperm. J. Exp. Bot. 54 (382): 569-575.
Fisher D.K., Boyer C.D., Hannah L.C. (1993) Starch branching enzyme Ⅱ from maize endosperm. Plant Physiol. 102: 1045-1046.
Fisher D.K., Gao M., Kim K.N., Boyer C.D., Guiltinan M.J. (1996) Two closely related cDNAs encoding starch branching enzyme from Arabidopsis thaliana. Plant Mol. Biol. 30: 97-108.
Gallant D.J., Bouchet B., Baldwin P.M. (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32: 177-191.
Gao M., Fisher D.K., Kim K.N., Shannon J.C., Guiltinan M.J. (1996) Evolutionary conservation and expression patterns of maize starch branching enzymeⅠ and Ⅱb genes suggests isoform specialization. Plant Mol. Biol. 30: 1223-1232.
Gao M., Fisher D.K., Kim K.N., Shannon J.C., Guiltinan M.J. (1997) Independent genetic control of maize starch branching enzyme Ⅱa and Ⅱb. Isolation and characterization of a sbe2a cDNA. Plant Physiol. 114: 69-78.
Genschel U., Abel G., Lorz H., Lutticke S. (2002) The sugary-type isoamylase in wheat: tissue distribution and subcellular localization. Planta 214: 813-820.
Guan H.P., Preiss J. (1993) Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol. 102: 1269-1273.
Hamada S., Nozaki K., Ito H., Yoshimoto Y., Yoshida H., Hiraga S., Onodera S., Honma M., Takeda Y., Matsui H. (2001) Two starch-branching-enzyme isoforms occur in different fractions of developing seeds of kidney bean. J. Biochem. 359: 23-34.
Hamada S., Ito H., Hiraga S., Inagaki K., Nozaki K., Isono N., Yoshimoto Y., Takeda Y., Matsui H. (2002) Differential characteristics and subcellular localization of two starch-branching enzyme isoforms encoded by a single gene in Phaseolus vulgaris L. J. Biol. Chem. 277: 16538-16546.
Hamada S., Isono N., Yoshizaki T., Ueno H., Yoshimoto Y., Takeda Y., Matsui H. (2004) Functional characteristics of C-terminal regions of starch-branching enzymes from developing seeds of kidney bean (Phaseolus vulgaris L.). Plant Sci. 166: 1149-1158
Hawker J.S., Ozbun J.L., Ozaki H., Greenberg E., Preiss J. (1974) Interaction of spinach leaf adenosine diphosphate glucose α-1,4-glucan α-4-glucosyl transferase and α-1,4-glucan, α-1,4-glucan-6-glucosyl tranferase in synthesis of branched α-glucan. Arch. Biochem. Biophys. 160: 530-551.
Hodge J.E., Osman E.M. (1976) Carbohydrates. In “Food Chemistry” pp. 102-114. Fennema, O.R. Marcel Dekker Inc., New York.
Hong S., Preiss J. (2000) Localization of C-terminal domains required for the maximal activity or for determination of substrate preference of maize branching enzymes. Arch. Biochem. Biophys. 378: 349-355.
Hoover R., Sosulski F.W. (1991) Composition, structure, functionality, and chemical modification of legume starches: a review: Can. J. Physiol. Pharmacol. 69: 79-92.
Hoover R., Li Y.X., Hynes G., Senanayake N. (1997) Physicochemical characterization of mungbean starch. Food Hydrocolloids. 11: 401-408.
Ito H., Hamada S., Isono N., Yoshizaki T., Ueno H., Yoshimoto Y., Takeda Y., Matsui H. (2004) Functional characteristics of C-terminal regions of starch-branching enzymes from developing seeds of kidney bean (Phaseolus vulgaris L.). Plant Sci. 166: 1149-1158.
Jobling S.A., Scheall G.P., Westcott R.J., Sidebottom C.M., Debet M., Gidley M.J., Jeffcoat R., Safford R. (1999) A minor form of starch branching enzyme in potato ( Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterization of multiple forms of SBE A. Plant J. 18: 162-171.
Kawasaki T., Mizuno K., Bada T., Shimada H. (1993) Molecular analysis of the gene encoding a rice starch branching enzyme. Mol. Gen. Genet. 237: 10-16.
Kossmann J., Visser R.G.F., Muller-Rober B., Willmitzer L., Sonnewald U. (1991) Cloning and expression analysis of a potato cDNA that encodes branching enzyme: evidence for coexpression of starch biosynthetic genes. Mol. Gen. Genet. 230: 39-44.
Khoshnoodi J., Blennow A., EK B., Rask L., Larsson H. (1996) The multiple forms of starch branching enzyme Ⅰ in Solanum tuberosum. Eur. J. Biochem. 242: 148-155.
Kuriki T., Stewart D.C., Preiss J. (1997) Construction of chimeric enzymes out of maize endosperm branching enzyme Ⅰ and Ⅱ: activity and properties. J. Biol. Chem. 272: 28999-29004.
Laemmli U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Larsson C.T., Hofvander P., Khoshnoodi J., Ek B., Rask L., Larsson H. (1996) Three isoforms of starch synthase and two isoforms of branching enzyme are present in potato tuber starch. Plant Sci. 117: 9-16.
Larsson C.T., Khoshnoodi J., Ek B., Rask L., Larsson H. (1998) Molecular cloning and characterization of starch branching enzyme Ⅱ from potato. Plant Mol. Biol. 37: 505-511.
Li C.Y., Chu Y.L, Chang Y.H. (1987) Isolation and characterization of mungbean starch. In Mungbean, Proceedings of the second International Symposium, Bangkok, Thailand, 1987. AVRDC. p.528-535.
Li M. (2001) Research advance in chemical composition and pharmacological action of mung bean. 上海中醫藥雜誌 5: 47-49.
Mizuno K., Kimura K., Arai Y., Kawasaki T., Shimada H., Baba T. (1992) Starch branching enzymes from immature rice seeds. J. Biol. Chem. 112: 643-651.
Mizuno K., Kawasaki T., Shimada H., Satoh H., Kobayashi E., Okumura S., Arai Y., Baba T. (1993) Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. J. Biol. Chem. 286: 19084-19091.
Mizuno K., Kobayashi E., Tachibana M., Kawasaki T., Fujimura T., Funane K., Kobayashi M., Baba T., (2001) Characterization of an isoform of rice starch branching enzyme, RBE4, in developing seeds. Plant Cell Physiol. 42: 349-357.
Morell M.K., Blennow A., Kosar-Hashemi B., Samuel M.S. (1997) Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol. 113: 201-208.
Mutisya J., Sathish P., Sun C., Andersson L., Ahlandsberg S., Baguma Y., Palmqvist S., Odhiambo B., Aman P., Jansson C. (2003) Starch branching enzymes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): comparative analyses of enzyme structure and gene expression. J. Plant Physiol. 160: 921-930.
Myers A.M., Morell M.K., James M.G., Ball S.G. (2000) Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiol. 122: 989-997.
Nair R.B., Baga M., Scoles G.J., Kartha K.K., Chibbar R.N. (1997) Isolation, characterization and expression analysis of starch branching enzyme Ⅱ cDNA from wheat. Plant Sci. 122: 153-163.
Nakamura Y. (2002) Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant Cell Physiol. 43: 718-725.
Nozaki K., Hamada S., Nakamori T., Ito H., Sagisaka S., Yoshida H., Takeda Y., Honma M., Matsui H. (2001) Major isoforms of starch branching enzymes in premature seeds of kidney bean (Phaseolus vulgaris L.). Biosci. Biotechnol. Biochem. 65: 1141-1148.
Nakamura Y., Yamanouchi H. (1992) Nucleotide sequence of a cDNA encoding starch branching enzyme, or Q-enzyme Ⅰ, from rice endosperm. Plant Physiol. 99: 1255-1266.
Pai, T.W., Chang, M.D.T., Tzou, W.S., Su, B.H., Wu, P.C., Chang, H.T., Chou, W.I. (2006) REMUS: a tool for identification of unique peptide seqments as epitopes. Nucl. Acids Res. 34: W198-W201
Preiss J., Sivak, M.N. (1998) Biochemistry, molecular biology and regulation of starch synthesis. Gent. Eng. 20: 177-223.
Rahman S., Abrahams S., Abbott D., Mukai Y., Samuel M., Morell M., Appels R. (1997) A complex arrangement of genes at a starch branching enzyme Ⅰ locus in the D-genome donor of wheat. Genome 40: 465-474.
Rahman S., Regina A., Li Z., Mukai Y., Yamamoto M., Kosar-Hashemi B., Abrahams S., Morell M.K. (2001) Comparison of starch branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch branching enzyme Ⅱa from the wheat D genome donor Aegilops tauschii. Plant Physiol. 125: 1314-1324.
Rydberg U., Andersson R., Aman P., Larsson H. (2001) Comparison of starch branching enzyme Ⅰ and Ⅱ from potato. Eur. J. Biochem. 268: 6140-6145.
Smith A.M. (1988) Major differences in isoforms of starch branching enzyme between developing embryos of round and wrinkled seeded peas (Pisum sativum L.). Planta 175: 270-279.
Smith A.M. (1999) Making starch. Curr. Opin. Plant Biol. 2: 223-229.
Smith A.M. (2001) The Biosynthesis of starch granules. Biomacromol. 2: 335-341.
Salehuzzaman S.N.I.M., Jacobsen E., Visser R.G.F. (1992) Cloning, partial sequencing and expression of a cDNA coding for branching enzyme in cassava. Plant Mol. Biol. 20: 809-819.
Sun C., Sathish P., Ahlandsberg S., Jansson C. (1998) The two genes encoding starch-branching enzymes Ⅱa and Ⅱb are differentially expressed in barley. Plant Physiol. 118: 37-49.
Um S.H., Song Y.O., Cheigh H.S. (1990) Compositions of lipid class and fatty acids in lipids extracted from mung bean starch. Journal of the Korean Society of Food and Nutrition. 19: 87-93.
Visser R.G.F., Jacobson E. (1993) Towards modifying plants for altered starch content and composition. TIBTECH. 11: 63-68.
Yamanouchi H., Nakamura Y. (1992) Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol. 33: 985-991.
Zhu J.H., Haase N.U., Kempf W. (1990) Starke 42: 1-4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊