跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 09:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林雁容
研究生(外文):Yan-Rung Lin
論文名稱:中紅外可調差頻雷射光源與高精密氫化氦分子離子光譜
論文名稱(外文):Tunable Mid-IR Difference Frequency Generation Source and Precise Spectroscopy of Helium Hydride Molecular Ion HeH+
指導教授:施宙聰施宙聰引用關係
指導教授(外文):Jow-Tsong Shy
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:126
中文關鍵詞:HeH+的紅外光譜躍遷譜線窄線寬的中紅外可調雷射光源飽和吸收飄移速度靈敏度放電管準確度
外文關鍵詞:molecular ion HeH+heternuclear moleculesDFG (Difference Frequency Generation) source in mid-IR washyperfine transitionssaturation absorptiondischarge tubecavity enhancementaccuracy
相關次數:
  • 被引用被引用:4
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文中有興趣的是分子離子HeH+的紅外光譜,HeH+是一個由兩個電子、兩個原子核組成的四體系統,因為結構單純,故可由量子力學出發解得高準確度的能階,其振動轉動頻率目前理論計算準確度可達30 MHz,實驗結果準確度為30~60 MHz。我們希望量測它的躍遷譜線至1 MHz的準確度。另外,在宇宙中大部份的組成為電漿,而分子離子HeH+是由兩個宇宙中含量最量豐富且最輕的元素組成,很多科學家推論宇宙中的星雲或星球可能有它的蹤跡。
拜近幾年來固態雷射與非線性晶體蓬勃發展之賜,及在近紅外與綠光頻率標準的確認,我們建立了一套窄線寬的中紅外可調雷射光源,功率約1.3~1.5 毫瓦,且具有非常高的頻率準確度(~1 MHz)。此紅外光的產生是結合1.2瓦、波長1064 nm的摻銣釔鋁石榴石(Nd:YAG) 雷射與大於1.5瓦、波長780~870 nm的鈦藍寶石 (Ti:Sapphire)雷射光經過非線性晶體-準相位匹配週期反轉鈮酸鋰晶體 (QPM PPLN: quasi-phase match periodically-poled LiNbO3),而產生兩入射雷射的頻率差(DFG-Difference Frequency Generation )的中紅外光,其波長涵蓋2.92~4.77 μm)。藉由雷射頻率鎖在碘分子的超精細結構 (hyperfine structure)上及差頻(Offset)鎖頻線路,我們可以準確改變與得知中紅外光的頻率。
建立此中紅外雷射光源後,我們測量甲烷(CH4)分子在3.39 μm飽和吸收的二次微分訊號,以測試系統頻率的準確度。甲烷分子在 P(7) F2(2) band 3.39 μm的飽和吸收是國際上採用的長度標準,其頻率為88376181.60018(27) MHz 。我們的測量結果為88376182.694(40) MHz,約比標準值大1.1 MHz。真正的誤差來源還不清楚,但我們可以確定此中紅外雷射光源具有1.1 MHz的準確度。同時,我們也測量甲烷在這波長附近的另二條飽和吸收譜線的頻率P(7) band: A2及E。
接著,利用此雷射光源我們量測HeH+於電子基態的五條躍遷譜線R(0)-R(4)(v=1-0)。光譜測量的靈敏度約 10^-8 cm-1/Hz^0.5 ,頻率的準確度約7~15 MHz。同時,也探討了HeH+離子於放電管中的飄移速度(drift velocity)與溫度等物理性質。
我們期望不久的將來,利用此雷射光源加上共振腔量測HeH+的飽和吸收訊號,以提高要遷頻率測量的準確度。另外,我們還希望測量H3+及HD的吸收訊號,它們與HeH+一樣在理論計算及天文上扮演非常重要的角色。
In this dissertation, we are interested in molecular ion HeH+. Second only to H2+, the helium hydride HeH+, hydrogen deuterium HD and their isotopes are the simplest heternuclear molecules. They are the good theoretical testing ground and also play important roles in the astrophysics. It is composed of the two most abundant elements in the universe. Hence it has been suggested presenting in the astronomical objects. At present, the accuracy in theoretical and experimental results is about 30 MHz. We have achieved an improved accuracy to a few MHz.
A stable and narrow linewidth DFG (Difference Frequency Generation) source in mid-IR was set up with power 1.3~1.5 mW and the accuracy of about 1 MHz. The DFG source was based on a Nd:YAG laser of power 1.2 W at 1064 nm, and a Ti:Sapphire laser with power >1.5 W at 780-870 nm. A multi-channel periodically poled LiNbO3 (PPLN) was used to generate the difference frequency within the tuning range 2.92~4.77 μm. The method which we used to get the frequency of the DFG source was to know the individual frequency of Ti:Sapphire and two YAG lasers, with the aid of hyperfine transitions of iodine molecule.
Before measuring the transition frequency of HeH+, we have tested the accuracy of system by measuring the second derivative saturation absorption of methane F2(2), P(7) line of the band at 3.39 μm. It is one of the recommended frequencies. Our measured result was 88376182.694(40) MHz and it is 1.1 MHz larger than the recommended value 88376181.60018(27) MHz. At present, we do not know the origin of the discrepancy. However, we can conclude that the frequency accuracy of our DFG source is ~1MHz. In addition to F2(2) P(7) line of the band, we have also measured the frequencies of E and A2 transitions of the P(7) line .
Five spectra, R(0) to R(4), in fundamental band of HeH+ in the electronic ground state were measured by the concentration modulation. The sensitivity in the present experimental setup was about 10^-8 cm-1/Hz^0.5 . Meanwhile, we have also investigated some physical properties of HeH+ in the discharge tube.
In the future, we expect to improve the accuracy of the transition frequency of HeH+ to ~1 MHz by observing the saturation spectroscopy with cavity enhancement technique. We plan to remeasure the transition frequencies of other simple molecules such as HD and H3+. Both HD and H3+ play import roles in the quantum mechanics calculation and in the astrophysics.
List of Figures
List of Tables
Ch 1 Introduction
1.1 Motivation-----------------------------------------1
1.2 Review of HeH+ Spectroscopy------------------------3
1.3 Overview of this Dissertation----------------------5
References------------------------------------------9
Ch 2 Theoretical Calculation of HeH+ and Its Spectrum
2.1 Schrödinger Equation and Solution---------------11
2.2 Spectroscopy------------------------------------18
2.3 High Accurate Theoretical Result of HeH+--------22
References------------------------------------------29
Ch 3 Background Knowledge of Our DFG Source
3.1 Nonlinear Optics--------------------------------31
3.2 Saturation Spectroscopy-------------------------35
3.3 Wavelength Modulation and Frequency Modulation--38
3.4 Hyperfine Structures of Iodine Molecule---------43
References------------------------------------------56
Ch 4 Tunable Mid-IR Difference Frequency Generation Source
4.1 Tunable Mid-IR Difference Frequency Generation Source-58
4.2 Frequency Stabilization of Nd:YAG Laser---------------61
4.3 Frequency Stabilization of Ti:Sapphire Laser----------64
4.4 Frequency Control by Off-set Lock Loop----------------66
4.5 Accuracy Test of DFG source------------------------------68
References------------------------------------------------86
Ch5 Precision Spectroscopy of HeH+
5.1 Observation of HeH+-----------------------------------88
5.2 Results and Discussions-------------------------------91
5.3 Summary----------------------------------------------101
References-----------------------------------------------115
Ch6 Summary and Future Work
6.1 Summary----------------------------------------------117
6.2 Future Works-----------------------------------------118
References-----------------------------------------------120
Appendix I
The properties of the electronic state of diatomic molecules121
Appendix II
The specifications of lasers in our experiment--------------122
Appendix III
The servo loop for the frequency stabilization of 450 mW Nd:YAG laser------------------------------------------------124
Appendix IV
The servo loop for the frequency stabilization of Ti:Sapphire laser-------------------------------------------------------125
Appendix V
The offset lock loop-------------------------------------------------------------------------------------------------------126
CH1
[1] I. Dabrowski and G. Herzberg, Trans. N. Y. Acad. Sci. Ser. II 38, 14 (1977)
[2] J. H. Black, Astrophys. J. 222, 125(1987)
[3] C. Cecchi-Pestellini and A. Dalgarno, Astrophys. J. 413, 611(1993)
[4] S. Miller, J. Tennyson, S. Lepp and A. Dalgarno, Nature(Lodon) 355, 420(1992)
[5] V. P. Gaur, et al. Astrophys. Space. Sci. 197, 57(1992)
[6] V. K. Dubrovich and A.A. Lipovka, Astron. Astrophys. 296, 307(1995)
[7] J. M. Moorhead, R. P. Lowe, J.-P. Maillard, W. H. Wehlau and P. F. Bernath,
Astrophys. J. 326, 899(1988)
[8] X.-W. Liu, et al., M.N.R.A.S. 290, L71(1997)
[9] H. L. Dinerstein and T. R. Geballe, Ap. J. 562, 515(2001)
[10] T. P. Hongness and E.G. Lunm, Phys. Rev. 26, 44(1925)
[11] C.S. Gudemann, et al., Phys. Rev. Lett. 50, 727(1983)
[12] T. Amano, J. Chem. Phys. 79, 3595(1983)
[13] S.C. Forster and A.R.W. Mckellar, J. Chem. Phys. 81, 3424 (1984)
[14] W.H. Wing, G. A. Ruff, W. E. Lamb, and J. J. Spezeski, Phys. Rev. Lett. 36,
1488(1976)
[15] D.E. Tolliver, G. A. Kyrala and W. H. Wing, Phys. Rev. Lett. 43, 1719(1979)
[16] A. Carrington, J. Buttenshaw, R. A. Kennedy, T. P. Softley, Mol. Phys. 44,
1233(1981)
[17] A. Carrington, R. A. Kennedy, T. P. Softley, Chem. Phys. 81, 251(1983)
[18] P. Bernath and T. Amano, Phys. Rev. Lett. 48, 20(1982)
[19] C.E. Blom, K. Möller and R.R. Filgueira, Chem. Phys. Lett. 140, 489(1987)
[20] D.-.J. Liu, W.-C Ho, and T. Oka, J. Chem. Phys. 87, 2442(1987)
[21] M. W. Crofton et al., J. Chem. Phys. 91, 5882(1989)
[22] J. Purder, S. Civiš, C.E. Blom and M.C.van Hemert, J. Mol. Spectros. 153,
701(1992)
[23] F. Matsushima, T. Oka and K. Takagi, Phys. Rev. Lett. 78, 1664(1997)
[24] Z. Liu and P. B. Davies, J. Chem. Phys. 107, 337(1997)
[25] Z. Liu and P. B. Davies, Phys. Rev. Lett. 79, 2779 (1997)
Ch2
[1] W. Kolos and L. Wolniewicz, Rev. Mod. Phys. 35,473(1963)
[2] M. Born and Opphenheimer, Ann Phys. 84, 457(1927)
[3] J. A. Coxon and P. G. Hajigeorgiou, J. Mol. Spec. 193, 306(1999)
[4] W. Heitleer and F. London, Z. Physik 44,455(1927)
[5] F. Hund, Z. Physik 42, 93(1927)
[6] R.S. Mulliken, Phys. Rev. 32, 186(1928)
[7] S. Peyerimhoff, J. Chem. Phys. 43, 998(1965)
[8] G.R.Taylor and R.G. Parr, Proc. Nat. Aca. Sci. 38, 154(1952)
[9] T. Yamada, H. Sato, E. Ishiguro and T. Takezawa, J. Phys. So. Japan, 32, 1595(1972)
[10] H.H. Michels and F.E. Harris, J. Chem. Phys. 39, 1464(1963)
[11] J.D. Stuart and F.A. Matsen, J. Chem. Phys. 41, 1646(1964)
[12] L.Wolniewicz, J. Chem. Phys. 43, 1087(1965)
[13] M. W. Crofton, R. S. Altman, N. N. Haese, and T. Oka, J. Chem. Phys. 91, 5882(1989)
[14] P.M. Morse, Phys. Rev. 34, 57(1929)
[15] E. L. Vernm et al., Phys. Rev. 54, 726(1938)
[16] H.M. Hulburt and J.O. Hirschfelder, J. Chem. Phys. 9, 61(1941)
[17] J. L. Dunham, Phys. Rev. 41, 721(1932)
[18] J. K. G. Watson, J. of Mol. Spectrosc. 80, 411-421(1980)
[19] Walter S. Struve, Fundamentals of Molecular Spectroscopy, New York,
Wiley(1989)
[20] R. W. Boyed, Nonlinear Optics, Academic Press, p.p.199-206(1992)
[21] J. Franck, Trans. Faraday Soc. 21, 536(1925); E. U. Condon, Phys. Rev. 32,
858(1928)
[22] S. Picard, Metrologia 33, 19(1996)
[23] C.A. Traynor, et.al. , J. Chem. Phys. 94, 3657(1991)
[24] B. Chen and J. B. Anderson, J. Chem. Phys. 102, 2802(1995)
[25] G. Glocker and D. L. Fuller, J. Chem. Phys. 1, 886(1933)
[26] L. Wolniewicz, J. Chem. Phys. 43, 1087(1965)
[27] W. Kolos, Int. J. Quantum Chem. 10, 217(1976)
[28] W. Kolos and J. M. Peek, Chem. Phys. 12, 381(1976)
[29] I. Dabrowski and G. Herzberg, Trans. N.Y. Acad. Sci. 38, 14(1977)
[30] D. M. Bishop and L. M. Cheung, J. Mol. Spec. 75, 462(1979)
[31] D. E. Tolliver, Ph. D. dissrtation, The University of Arizona(1980)
[32] L. Wolniewicz, J. Chem. Phys. 78, 6173(1983)
[33] C. Schwartz and R. J. Le Roy, J. Mol. Spectrosc. 121, 420(1987)
[34] L. Wolneiwicz, J. Chem. Phys. 103, 1792(1995)
[35] W. Kolos and L. Wolneiwicz, J. Chem. Phys. 45, 509(1966)
[36] D. M. Bishop and L. M. Cheung, Phys. Rev. A 18, 1846(1978)
[37] L. Wolneiwicz’s, J. Chem. Phy. 99, 1851(1993)
[38] W. Kolos and J. Rychlewiski, J. Chem. Phys. 98, 3960(1993)
[39] D. B. Bishop and M. L. Cheung, Chem. Phys. Lett. A 55, 593(1978)
[40] M.-C. Chuang and R. N. Zare, J. Mol.
CH3
[1] J. A. Kozlovsky et al. Phys. Rev. 127, 1918-1939(1962)
[2] M. Yamada et al., Appl. Phys. Lett. 62, 435(1993)
[3] S. Sanders et al. , Electrons. Lett. 32, 218(1996)
[4] Q.Chen and W. p. Risk, Electrons. Lett. 30, 1516(1994)
[5] G. Rosenman et al., Appl. Phys. Lett. 73, 3650(1998)
[6] H. Karlsson et al., Electrons. Lett. 32, 556(1996)
[7] G.R. rosenman et al., J. Phys. D, 32, L49(1999)
[8] M.L. Boltz, Ph. D. dissertation, Edward L. Ginzton Lab. Stanford
University(1994)
[9] L.E. Myers, Ph. D. dissertation, Edward L. Ginzton Lab. Stanford
University(1995)
[10] Y. Furrkawa et al. , Opt. Lett. 23, 1892(1998)
[11] Edited by F. T. Arecchi, F. Structrumia and H. Walther, Advances in Laser
Spectroscopy, Plenum Press, New York, P.127, (1983)
[12] N. F. Ramsey, Molecular Beams, Oxford University Press, London(1956)
[13] R.A. Macfarlane, W. R. Bennet, W.E. Labm, Jr, APPL. Phys. Lett. 2,189 (1963)
[14] A. Szöke, A. Javan, Phys. Rev. Lett. 10, 521(1963)
[15] C. Bordè , Compt. Rend, 271, 371(1970)
[16] T. W. Hänch, M. D. Levenson, and A. L. Schawlow, Phys. Rev. Lett. 26,
946(1971)
[17] C. Wieman and T.W. Hansch, Phys. Rev. Lett. 36, 1170(1976)
[18] M.S. Sorem and A.L. Shawlow, Opt. Comm. 5, 148(1972)
[19] J.E. Lawler et al., Phys. Rev. Lett. 42, 1046(1979)
[20] E.E. Marinero and M. Stuke, Opt. Comm. 5, 148(1972)
[21] R.W. Boyed, Nonlinear Optics, Academic Press, P.P. 199-205(1992)
[22] Wolfgang Demtrőder, Laser spectroscopy, Springer, the 2nd ed. P.68 (1996)
[23] H.-R. Xia, J.I. Cirac, S. Swartz, B. Kohler, D.S. Elliott, J.L. hall, and P. Zoller, J.
Opt. Soc. Am. B 11, 721(1994)
[24] G. Khitrova, P. R. Berman and M.Sargent III, J. Opt. Soc. Am. B 5, 160(1988)
[25] J.M. Supplee et al., Appl. Opt. 33, 6294(1994)
[26] M. Nakazawa, J. Appl. Phys. 59, 2297(1986)
[27] T. Mitsui, K. Yamashita, and K. Sakurai, Appl. Opt. 36, 5494(1997)
[28] B.J. Bjorklund, Opt. Lett. 5, 15(1980)
[29] B. J. Bjorklund et al., Appl. Phys. B, 32, 145(1983)
[30] N. Picque et al., J. Opt. Soc. Am. B, 18, 692(2001)
[31] W.Y. Cheng, Ph. D. dissertation, Tsing Hua University(1999)
[32] Jun Ye, L.-S. Ma and J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998)
[33] J. H. Shirley, Opt. Lett. 7, 537(1982)
[34] G. Camy et al. Opt. Commu. 41, 325(1982)
[35] J.J. Snyder et al. Opt. Lett. 5, 163(1980)
[36] A. Schenzle, R.G. DeVoe, and R.G. Brewer, Phy. Rev A 25, 2606(1982)
[37] R.K. Raj et al., Phys. Rev. Lett. 44, 1251(1980)
[38] G. Camy, Ch. J. Bordé and M. Ducloy, Opt. Commu. 41, 325(1982)
[39] J.E. Bernard, A. A. Madej, L. Marmet, B.G. Whitfold, K.J. Siemsen, and S.
Cundy, Phys. Rev. Lett. 48, 544(1999)
[40] S. Ezekiel and R. Weiss, Phys. Rev. Lett. 20, 91(1968)
[41] T.J. Quinn, Recommendation adopted by the Comitè International des Poids
Measures at its 86th meeting, Metrologia 30, 523 (1993/1994)
[42] T.J. Quinn, Metrologia 36, 211(1999)
[43] A. Yokozeki and J.S. Muenter, J. Che. Phys. 72, 3796(1980)
[44] L.A. Hackle et al., Phys. Rev. Lett. 35, 568(1975)
[45] M. Gläser, CCDM/82-83
CH4
1] D. Rehle et al., Appl. Opt. B. 72, 947(2001)
[2] B. K. P. Petrov et al. , Appl. Opt. 66, 531(1998)
[3] D. Mazzotti et al., Opt. Lett. 25, 350(2000)
[4] D. Mazztti, P. Cancio, G. Guisfredi, M. Inguscio, and P. De Natale, Phys. Rev. Lett. 86, 1919(2001)
[5] U. Strößner et al. , J. Opt. Soc. Am. B 19, 1419(2002)
[6] S. Gerstenkorn and P. Luc, Atlas du Spectre d’Absorption de la Mole’cule d’Iode
entre 11000- 14000 cm-1, Laboratoire Aimé Cotton, CNRS II, 91405 Orsay,
France (1982).
[7] Comité International des Poids et Measures, Report of the 9th Meeting (October
2001)
[8] B. Bodermann, G. Bönsch, H. Knöckel, A. Nicolaus, and E. Tiemann,
Metrologia, 35, 105(1998).
[9] IEEE J. Quan. Electr. QE-16, 483(1980)
[10] J. L. Hall, L. Hollberg, T. Baer, and H.G. Robinson, Appl. Phys. Lett. 39,
680 (1981)
[11] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller and M. Zielonkowski,
Rev. Sci. Instr. 70, 242 (1999).
[12] Phase Lock Loop, McGraw-Hill, R.E.Best. the 2-nd edition.
[13] H. J. Gerritsen, Proceedings of The Third International Congress on Quantum
Electronics 1963, Pairs, edited by P. Grivet and N. Bloembergen (Columbia University Press, N. Y., 1964) P.58
[14] K. Shimoda, High-Resolution Laser Spectroscopy, edited by K. Shimoda
(Springer-Verlag, New York, 1976) Ch2, pp. 11-49.
[15] F. Bayer-Helms, J. Helmcke, Physikalisch-Technische Bunde sanstalt,
PTB-bericht, Modulation Broadening of Spectral profile, P.85.
[16] A. Yu. Nevsky et al., Opt. Comm. 192, 263(2001).
[17] R. Holzwarth, A.Yu. Nevsky, M. Zimmermann, Th. Udem, T. W. Hänsch, J. von Zanthier, H. Walther, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, M. N. Skvortsov and S. N. Bagayev, Appl. Phys. B 73, 269(2001).
[18] E. A. Whittaker, M. Gehrtz, G. C. Bjorklund, J. Opt. Soc. Am. B 2, 1320(1985)
[19] M. Gehrtz, G. C. Bjorklund and E. A. Whittaker, J. Opt. Soc. Am. B 2,
1510(1985)
[20] F. Spieweck, IEEE Tran. Instrum. Meas. IM-34, 246(1985). W.R.C. Rowley and
B. R. Marx, Metrologia, 17, 65(1981)
[21] R. L. Barger and J. L. Hall, Phys. Rev. Lett. 22, 4(1969)
CH5
[1] P. Bernath and T. Amano, Phy. Rev. Lett. 48, 20 (1982)
[2] A. von Engel, Ionized gas, Oxford Univ. Press, London (1994)
[3] F. Howorka et al., J. mass Spectrom. Ion Physics, 12, 67(1973)
[4] P.F. Knewstubb and A.W. Tickner, J. Chem. Phys. 38, 464(1963)
[5] Z. Liu and P. B. Davies, J. Chem. Phys. 107, 337(1997)
[6] G. Bekefi, Principles of laser Plasma, Wiley, New York (1976)
[7] W. Lindinger, A.L. Schmeltekopf, F.C. Fehsenfeld J. Chem. Phys. 61,
2890(1974)
[8] Wolfgang Demtrőder, Laser spectroscopy, Springer, the 2nd edit. P.68 (1996)
[9] M. W. Crofton, R.S. Altman, N.N. Haese and T. Oka, J. Chem. Phys. 91,
5882(1989)
[10] D. E. Tolliver, G. A. Kyrala and W. H. Wing, Phys. Rev. Lett. 43, 1719(1979)
[11] F. Matsushima, T. Oka and K. Takagi, Phys. Rev. Lett. 78, 1664(1997)
[12] J. L. Dunham, Phys. Rev. 41, 721(1932)
[13] N. N. Haese, F.-S. Pan and T. Oka, Phys. Rev. Lett. 50, 1575 (1983)
[14] M. W. Crofton, Ph. D. dissertation, the University of Chicago (1987)
[15] C. M. Lindasy, R. M. Rade, Jr., and T. Oka, J. Mol. Spectros. 210, 51(2001)
[16] J. F. Ogilive, The vibrational and Rotational Spectroscopy of Diatomic Molecules, , Academic Press(1998)
[17] C. M. Lindsay, Ph. D. dissertation, the University of Chicago(2002)
[18] J. A. Coxon and P.G. Hajigeorgiou, J. Mol. Spectros. 193, 306(1999)
[19] C.H. Towns and A. L. Schawlow, Molecular Spectroscopy, Dover Pub.
Inc.(1975)
[20] B. F. Gordiets, A. I. Osipov and L. A. Shelepin, Kinetic process in gases and
molecular lasers, Gordon and Breach Science Publishers S.A.(1988)
[21] C. B. Baker and N. De Hass, Phys. Fluids, 7, 1400(1984)
[22] E.W. McDaniel and E.A. Mason, The Mobility and Diffusion of Ions in Gases.
New York:Wiley (1973)
[23] O.J. Orient, Chem. Phys. Lett. 52, 264(1977)
[24] Philip C.D. Hobbs, Appl. Opt. 36, 903(1997)
CH6
[1] Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, Phys. Rev. Lett. 82,
3568(1999)
[2] R. Holzwarth et al. Appl. Phys. B Rapid communicartion(2001)
[3] A.Yu. Nevsky et al., Opt. Comm. 192, 263(2001)
[4] N. H. Rich, J. W. C. Johns and A.R.W. Mckellar, J. Mol. Spectros. 95, 432(1982)
[5] T.R. Geballe and T. Oka, Nature 384, 334(1996)
[6] B.J. McCall, T.R. Geballe, K.H. Hinkle and T. Oka, Astrophys. J. 522,
338(1999)
[7] B.J. McCall, T.R. Geballe, K.H. Hinkle and T. Oka, Science 279, 1910(1989)
[8] B.J. McCall, T.R. Geballe, K.H. Hinkle and T. Oka, Astrophys. J. 510, 251(1999)
[9] K. H. Hinkle, R. R. Joyce, N. Sharp and J. A. Valenti, Proc. SPIE 4008, 720(2000)
[10] C. M. Lindsay and B. J. McCall, J. Mol. Spectros. 210, 60(2001)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top