跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施智凱
研究生(外文):Jhih-Kai Shih
論文名稱:(Fe, Co)MPCBSi(M=Mo, V, Nb, Ti, Hf, Zr, Ta)合金之非晶形成能力與軟磁特性研究
論文名稱(外文):Glass Forming Ability and Soft Magnetic Croperties of (Fe, Co)MPCBSi (M=Mo, V, Nb, Ti, Hf, Zr, Ta) Alloys
指導教授:張文成張文成引用關係
指導教授(外文):Wen-Cheng Chang
口試委員:楊智超張文成林克偉
口試委員(外文):Chih-Chao YangWen-Cheng ChangKe-Wei Lin
口試日期:2013-06-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:物理學系暨研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:154
中文關鍵詞:軟磁特性非晶形成能力非晶厚片塊材
外文關鍵詞:soft magnetic propertiesGFABMG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:505
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本實驗先以Fe76M3P10C4B3Si3 (M=Mo、V、Nb、Ti、Hf、Zr 與Ta 等) 為起點,研究不同過渡元素對薄帶非晶化能力及磁特性之影響。其中M= Mo 系列擁有最好的非晶形成能力,其過冷溫度區間(∆Tx)= 62 K 、約化玻璃轉換溫度(Trg)= 0.57。在磁特性方面,經以震動樣品測磁儀(VSM)量測最低矯頑磁力(Hc)為M=Mo之合金薄帶之24.6 A/m。 接著以Fe79-xMoxP10C4B3Si3 (x= 2.5, 3.0, 3.5, 4.0, 4.5) 合金製成非晶薄帶及塊材樣品,並分別量測其結晶結構、磁特性及熱性質。最低矯頑磁力出現在x= 3.0 之24.6 A/m。在熱性質方面,此系列之Trg 皆為0.57,而x= 2.5, 3.0, 3.5 三組合金之∆Tx 較大,分別為52 K、62 K 與58 K。再將x= 2.5, 3.0, 3.5之合金製成厚片塊材,其中Fe76Mo3P10C4B3Si3 成分可製成長14 mm、寬4 mm、厚度2 mm 之非晶厚片,是此系列所能做出最大尺寸之非晶厚片塊材。其磁特性分別為:飽和磁化量σ12 kOe= 1.09 T、矯頑磁力Hc= 50.6 A/m ( 0.63 Oe) 及居禮溫度TC= 535 K。最後,再以Fe76-xCoxMo3P10C4B4Si3 (x= 0, 5, 10, 15, 20) 合金金製成非晶薄帶及塊材樣品,並分別量測其結晶結構、磁特性及熱性質。最低矯頑磁力15.2 A/m 出現在 x= 10 之薄帶。在熱性質方面,此系列之Trg 皆為0.58,而x= 10 之合金薄帶之∆Tx 較大,為51 K。
Amorphous materials with excellent intrinsic properties, such as high thermal stability, high electrical resistivity, outstanding soft magnetic and mechanical properties, have been discovered. Consequently, ferromagnetic Fe-based bulk metallic glasses (BMGs) were considered as suitable candidates for replacing conventional crystalline Si-steel for motor applications. In this work, the effect of transition metals (M, M=Mo, V, Nb, Ta, Ti, Zr, and Hf) on the glass-forming ability (GFA) and soft magnetic properties of Fe76M3P10C4B3Si3 melt spun ribbons and BMGs sheets were studied. Among those transition metals, Mo exhibits the best GFA properties. Meanwhile, for Fe76Mo3P10C4B3Si3 ribbon, the supercooled region (∆Tx) of 62 K, reduced glass transition temperature (T¬rg) of 0.57, as well as the lowest Hc of 24.6 A/m, measured by vibrating sample magnetometer, were obtained. According to these results, the Mo content was modified in order to further improve GFA and soft magnetic properties of the samples. For Fe79-xMoxP10C4B3Si3 (x= 2.5, 3.0, 3.5, 4.0, 4.5) series ribbons, the best GFA properties and soft magnetic properties were achieved for x=3. In addition, the maximum thickness of amorphous sheet using Fe76Mo3P10C4B3Si3 can be as large as 2 mm which showed the optimal properties of ∆Tx= 62 K, T¬rg= 0.57, σ12 kOe= 1.09 T, Hc= 50.6 A/m (0.63 Oe) and TC= 535 K. Finally, amorphous ribbon and bulk samples were made by using Fe76-xCoxMo3P10C4B4Si3 (x= 0, 5, 10, 15, 20) alloys. The lowest coercivity was found in alloy ribbons with x= 10, it also showed the optimal properties of ∆Tx= 51 K, T¬rg= 0.58, σ12 kOe= 1.19 T, Hc= 15.2 A/m ( 0.19 Oe) and TC= 594 K.
第一章 緒論 1
1-1 簡介 1
1-2 軟磁材料簡介 3
1-3 非晶質合金特性 6
1-4 軟磁鐵芯的條件 9
1-5 非晶質合金種類 13
1-6 磁性非晶質合金的種類 16
1-7 非晶態合金的發展歷史 18
1-8 鐵基非晶合金塊材之文獻資料 21
1-9 實驗動機與目的 24
第二章 理論基礎 27
2-1 磁性介紹 27
2-1-1 磁性起源 27
2-1-2 隨機異向性模型 29
2-1-3 多相系統與混合異向性 31
2-1-4 磁性體分類 33
2-1-5 軟磁性質 38
2-2 非晶質合金之形成條件 40
2-3 非晶質形成相關理論 41
2-4 熔體過冷與非晶態轉變 45
2-4-1 玻璃轉換溫度 (glass transition temperature, Tg) 47
2-4-2 臨界冷卻速率 (critical cooling rate, Rc) 47
2-5 形成非晶塊材合金的要素 49
2-5-1 玻璃形成能力 ( glass forming ability, GFA ) 49
2-5-2 固溶原子的影響 52
2-5-3 共晶點 52
2-5-4 原子的鍵結特性 53
2-6 非晶質合金之製造方法 54
2-7 非晶合金塊材製備方法 56
第三章 實驗方法 58
3-1 實驗流程 58
3-2 合金成分的配置 63
3-2-1 合金熔煉 63
3-2-2 熔融旋淬(melt-spinning) 64
3-2-3 銅模鑄造法 66
3-3 量測與分析 68
3-3-1 磁性量測-VSM 68
3-3-2 居理溫度量測-TMA 68
3-3-3 結構鑑定-XRD 69
3-3-4 熱性質分析-DTA 69
3-3-5 熱性質分析-DSC 70
第四章 結果與討論 71
4-1 Fe76M3P10C4B4Si3 ( M= Mo, Ti, Zr, Hf, V, Nb, Ta) 合金之非晶形成能力與軟磁特性 71
4-1-1 不同冷卻速率製備Fe76Mo3P10C4B4Si3薄帶與厚片之特性比較 71
4-1-2 不同冷卻速率製備Fe76V3P10C4B4Si3薄帶與厚片之特性比較 81
4-1-3 不同冷卻速率製備Fe76Nb3P10C4B4Si3薄帶與厚片之特性比較 85
4-1-4 不同冷卻速率製備Fe76Ti3P10C4B4Si3薄帶與厚片之特性比較 89
4-1-5 不同冷卻速率製備Fe76Hf3P10C4B4Si3薄帶與厚片之特性比較 93
4-1-6 不同冷卻速率製備Fe76Zr3P10C4B4Si3薄帶與厚片之特性比較 97
4-1-7 不同冷卻速率製備Fe76Ta3P10C4B4Si3薄帶與厚片之特性比較 101
4-1-8 Fe76M3P10C4B4Si3 系(M= Mo, V, Nb, Ti, Hf, Zr, Ta)特性綜合比較 105
4-2 Fe79-xMxP10C4B4Si3 合金(x= 2.5, 3.0, 3.5, 4.0, 4.5, 5.0)特性比較 111
4-2-1 Fe79-xMxP10C4B4Si3 薄帶(x= 2.5, 3.0, 3.5, 4.0, 4.5, 5.0)特性比較 111
4-2-2 不同冷卻速率製備Fe76.5Mo2.5P10C4B4Si3之薄帶與厚片特性比較 116
4-2-3 不同冷卻速率製備Fe75.5Mo3.5P10C4B4Si3之薄帶與厚片特性比較 120
4-3 Fe76-xCoxMo3P10C4B4Si3 合金(x= 0, 5, 10, 15, 20)特性比較 125
4-3-1 Fe76-xCoxMo3P10C4B4Si3 薄帶(x= 0, 5, 10, 15, 20)特性比較 125
4-3-2 不同冷卻速率製備Fe71Co5Mo3P10C4B4Si3之薄帶與厚片特性比較 130
4-3-3 不同冷卻速率製備Fe66Co10Mo3P10C4B4Si3之薄帶與厚片特性比較 134
4-4 Fe79-xMxP10C4B4Si3 合金(x= 2.5, 3.0, 3.5, 4.0, 4.5, 5.0) 相結構分析 139
4-4-1 Fe79-xMxP10C4B4Si3 合金(x= 2.5, 3.0, 3.5, 4.0, 4.5, 5.0) 磁性相分析 139
4-4-2 Fe76Mo3P10C4B4Si3 合金TEM 顯微結構分析 148
第五章 結論 152
5-1 不同過渡元素對Fe76M3P10C4B4Si3 合金薄帶之效應 152
5-2 不同含量Mo 於Fe-P-C-B-Si 合金之效應 152
5-3 不同含量Co 於Fe-Co-P-C-B-Si 合金之效應 153
5-4 Fe-Mo -P-C-B-Si 合金之相結構 153
參考文獻 155

[1]. J. M. D. Coey, “Magnetic Materials, ” Journal of Alloys and
Compounds, 326, 2-6, (2001)
[2]. 吳學陞, 工業材料, 149, 154, (1999).
[3]. A. Inoue, Bulk Amorphous Alloys Practical Characteristics and
Applications Institute for Material Research, Tohoku University,
Sendai, Japan, (1999).
[4]. 鄭振東, 非晶質金屬漫談, 建宏出版社, Taipei, Taiwan, (1990).
[5]. A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Masumoto,
Mater. Trans, JIM, 35, 95, (1994).
[6]. R. W. Cahn, P. Hassen and , E. J. Kramer(ed), Materials Science and
Technology, 9, New York, USA, (1991).
[7]. A. Inoue, A. Takeuchi, Acta Materialia, 59, 2243, (2011).
[8]. 陳光, 金屬玻璃及其複合材料, 哈爾濱工業大學出版社, (2007).
[9]. J. Kramer, Annln Phys, 37, 19, (1934).
[10]. A. Brenner, D. E. Couch and E. K. Williams, J. Res. Natn. Bur.
Stand, 44, 109, (1950).
[11]. H. Cohen Morrel and D. Turnbull, “Molecular Transport in Liquids
and Glasses, ” Journal of Chemical Physics, 31, 1164-1169, (1959).
[12]. P. Duwex and S. C. H. Lin, “Amorphous Ferromagnetic Phase in
Iron-Carbon-Phosphorus Alloys, ” Journal of Applied Physics, 38, 4096-4097, (1967).
[13]. J. Kramer, Annln Phys, 37, 19, (1934).
[14]. H. S. Chen and C. E. Miller, Rev. Sci. Instrum, 41, 1237 (1970).
[15]. POLK D E. Structural Model for Amorphous Silicon and
Germanium[J]. Noncryst.Solids., 365-374, (1971).
[16]. HANNEMAN A, SCHöN JC, JANSEN M. A Random Close
Packing Based Algorithm for the Generation of Continuous Random Network[J].Computure Physics Communications, 284-296, (2002).
[17]. H. S. Chen, “Thermodynamic Considerations on the Formation and
Stability of Metallic Glasses, ” Acta Metallurgica, 22, 1505-1511, (1974).
[18]. H.W. Kui, A. L. Greer and D. Turnbull, Appl. Phys. Lett, 45, 615,
(1984).
[19]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, Mater.
Trans, JIM, 32, 609, (1991).
[20]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater.
Trans, JIM, 33, 937, (1992).
[21]. Kui H.W., A.L. Greer, and D. Turnbull, Applied Physics Letters,
615-616, (1984).
[22]. Kui H.W. and D. Turnbull, Applied Physics Letters, 796-797,
(1985).
[23]. Inoue A., Ohtera K., Kita K. and Masumoto T., Japanese Journal of
Applied Physics Part 2-Letters, 2248-2251, (1988).
[24]. Inoue A., T. Zhang, and T. Masumoto, Materials Transactions Jim,
965-972, (1989).
[25]. Inoue A., T. Zhang, and T. Masumoto, Materials Transactions Jim,
177-183, (1990).
[26]. Peker A. and W.L. Johnson, Applied Physics Letters, 2342-2344,
(1993).
[27]. T. Mizushima, S. Yoshida and A. Inoue, J. Magn. Soc. Jpn, 22,
1085, (1998).
[28]. R. E. Park and A. Inoue: Mater. Trans, JIM 40, 1444, (1999).
[29]. T. Mizushima, K. Ikarashi, S. Yoshida, A. Inoue, Material
Transaction, JIM, 40, 9, 1019 , (1999).
[30]. S.-S. Wu et al, Intermetallics 12, 1261, (2004).
[31]. B.-L. Shen, H. Koshiba, T. Mizushima, A. Inoue, Material
Transaction, 43, 8, 1974 , (2002).
[32]. C.Y. Lin et al, Journal of Magnetism and Magnetic Materials 282,
156, (2004).
[33]. P. Pawlik et al, Materials Science and Engineering A 375, 372,
(2004).
[34]. M. Stoica et al, Materials Science and Engineering A 375, 399,
(2004).
[35]. D.Y. Liu et al, Journal of Alloys and Compounds 370, 249, (2004).
[36]. Pawlik, Davies, and Gibbs, Appl. Phys. Lett., 83, 146117, (2003).
[37]. D.Y. Liu et al, Intermetallics 12, 1149, (2004).
[38]. A. Inoue, A. Zhang, A. Koshiba, A. Makino, J. Appl. Phys., 83,
6326, (1998).
[39]. F.S. Li et al, Intermetallics 12, 1139, (2004).
[40]. A. Inoue and W. Zhang, J. Appl. Phys., 85, 8, 15, (1999).
[41]. Koshiba, Inoue, and Makino, J. Appl. Phys., 85, 8, 15, (1999).
[42]. W. Zhang and A. Inoue, Appl. Phys. Lett., 80, 9, 4, (2002).
[43]. W. Zhang, Y. Long, M. Imafuku, A. Inoue, Material Transaction,
43, 8, 1974, (2002).
[44]. T. Zhang, A. Inoue. Material Transaction, 43, 4, 766 , (2002).
[45]. Horia Chiriac, Member, IEEE, and Nicoleta Lupu, Member, IEEE,
IEEE TRANSACTIONS ON MAGNETICS, 41, 10, (2005).
[46]. A. Inoue, B. Shen. Material Transaction, 42, 6, 1015, (2001).
[47]. M. Zhang, F. Kong, A. Wang, C. Chang, and B. Shen, J. Appl.
Phys., 111, 07A312, (2012).
[48]. Amiya et al., J. Appl. Phys., 97, 10F913-2, (2005).
[49]. A. Inoue and J. S. Gook, Mater. Trans, JIM, 36, 1180, (1995).
[50]. C. Chang, C. Qin, A. Makino, and A. Inoue, Journal of Alloys and
Compounds, 533, 67, (2012).
[51]. Y. Fu, B. Shen, H. Kimura, A. Makino, and A. Inoue, J. Appl.
Phys., 107, 09A315, (2010).
[52]. A. Inoue, “Bulk Amorphous Alloys”, Trans Tech Publications,
Zurich. (1999).
[53]. H.Y. Jung, S.Yi, Intermetallics 18, 1936, (2010).
[54]. B. Shen, M. Akiba, and A. Inoue, PHYSICAL REVIEW B 73,
104204, (2006).
[55]. H.X. Li, Z.B. Jiao, Z.P. Lu, Intermetallics 18, 1821, (2010).
[56]. A. Urata, M. Yamaki, M. Takahashi, K. Okamoto, and
H. Matsumoto et al, J. Appl. Phys., 111, 07A335, (2012).
[57]. T. Mizushima, S. Yoshida and A. Inoue, J. Magn. Soc. Jpn, 22, 1085, (1998).
[58]. C. Y. Lin, H. Y. Tien and T. S. Chin, Appl. Phy. Lett., 86, 162501, (2005).
[59]. H. W. Chang, Y. C. Huang, C. W. Chang, C. H. Chiu and W. C. Chang, J. Alloys and Comp., 462, 68, (2008)
[60]. H. W. Chang, Y. C. Huang, C. W. Chang, C. C. Hsieh and W. C.
Chang, J. Alloys and Comp., 472, 166, (2009).
[61]. 黃泳誠,國立中正大學碩士論文 (2006).
[62]. T. D. Shen and R. B. Schwarz, Appl. Phys. Lett., 75, 49, (1999).
[63]. B. L. Shen and A. Inoue, Mater. Trans., 43, 1235, (2002).
[64]. P. Paliwk, H. A. Davies, and M. R. J. Gibbs, Mater. Sci. Eng. A,
375, 372, (2004).
[65]. R. B. Schwarz, T. D. Shen, U. Harms, and T. Lillo, J. Magn. Magn. Mater., 283, 233,(2004).
[66]. M. Stoica, S. Roth, J. Eckert, L. Schultz, and M. D. Baro, J. Magn. Magn. Mater., 290, 1480, (2005).
[67]. A. Inoue, B. L. Shen, and C. T. Chang, Acta Mater., 52, 4093,(2004).
[68]. B. L. Shen, A. Inoue, and C. T. Chang, Appl. Phys. Lett., 85, 4911, (2004).
[69]. T. Mizhushima, A. Makino, and A. Inoue, J. Appl. Phys., 83, 6329, (1998).
[70]. B. L. Shen, A. Makino, and A. Inoue, Appl. Phys. Lett., 88, 131907, (2006).
[71]. G. Herzer, Acta Materialia, 61, 718–734, (2013).
[72]. G. Herzer, KHJ. Buschow, editor. Handbook of magnetic materials, 10, Elsevier Science BV, (1997).
[73]. R. Alben, JJ. Becker, MC, Chi, J Appl Phys, 49, 1653–8, (1978).
[74]. G. Herzer, B. Idzikowski, P. Svec, M. Miglierini, Properties and applications of nanocrystalline alloys from amorphous precursors, Kluwer Academic Publishers, (2005).
[75]. G. Herzer, J Magn Magn Mat, 294, 99–106, (2005).
[76]. 賴奕翔,國立中正大學碩士論文 (2010).
[77]. G. Herzer, J Magn Magn Mat, 133–136, 157–8, (1996).
[78]. D. Turnbull, Contemp. Phys, 10, 473, (1969).
[79]. G. S. Fulcher, J. Amer. Cerm. Soc, 77, 3701, (1925).
[80]. H. S. Chen, Metallic Glasses, American Society for Metals, Ohio,
74-96, (1976).
[81]. D. R. Uhlmann. Joumal of Non-Crystalline Solids, 7, p.337, 1972.
[82]. M. Avrami, J. Chem. Phys. 7, 1103, (1939).
[83]. M. Avrami, J. Chem. Phys. 8, 212, (1940).
[84]. M. Avrami, J. Chem. Phys. 9, 177, (1941).
[85]. A. Inoue, Acta mater, 48, 279, (2000).
[86]. 閆相全, 宋曉艷, 張久興, 塊體非晶合金材料的研究進展, 北京
工業大學材料學院 (2007).
[87]. M. X. Zhang, B. L. Shen, and A. Wang, AIP Advance, 2, 022169, (2012).
[88]. 馬殿國, 白明, 李學山, 桂文龍, 包舉成, 包富泉,
Gd2Co15.24-xFexCr1.76 化合物的結構和磁性, 內蒙古師範大學學報, (2012).
[89]. J. L. Wang, N. Tang, R. W. Zhao, et.al., Magnetic properties of
Y(Fe, M)10Si2[J]., Journal of Magnetism and Magnetic materials., 166, 335, (1997).
[90]. J. Zhang , B. Shen , Z. Zhang, Journal of Non-Crystalline Solids,
360, 31–35, (2013).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top