跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/07 06:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:高偉峯
研究生(外文):KAO,WEI-FENG
論文名稱:考慮趕工成本與模糊利率之整合型存貨模型
論文名稱(外文):An Integrated Inventory Model with the Considerations of Crashing Costs and A Fuzzy Interest Rate
指導教授:賀力行賀力行引用關係
指導教授(外文):HO,LI-HSING
口試委員:蘇純繒陳鎮江吳鴻輝楊明峰
口試委員(外文):SU,CHWEN-TZENGCHEN,CHIANG-CHENWU,HONG HUIYANG,MING-FENG
口試日期:2016-06-24
學位類別:博士
校院名稱:中華大學
系所名稱:科技管理博士學位學程
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:56
中文關鍵詞:整合型存貨模型供應鏈管理模糊利率趕工成本
外文關鍵詞:Integrated Inventory ModelSupply Chain ManagementFuzzy Interest RateCrashing Cost
相關次數:
  • 被引用被引用:2
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的研究架構是建構一套整合型存貨模型,並且同時考慮模糊利率以及趕工成本的影響因素。近年來,隨者全球化競爭日趨激烈,存貨管理策略的研究在供應鏈管理中發揮了至關重要的影響。因此,本論文的研究目的是發展一套更符合實際企業營運狀況的存貨模型,用以提高整體整合型供應鏈的利益。同時,根據文獻,如何有效地減少前置時間和相關的存貨成本乃是當前供應鏈管理的非常重要的思考點。
然而,過去大多數的研究尚未考慮到時間價值對整體供應鏈的影響效果。因此,為了更趨近真實的營運狀況,本論文開發了考量趕工成本和時間價值的整合型存貨模型。此外,本研究應用單一距離法,並且使用模糊理論來計算,目的是發展一套更符合實際企業營運狀況的存貨模型。最後,本論文提供一個簡單的案例,透過案例模型,我們得以確定最佳訂購數量,所需的前置時間長度,和許多個從賣方到買方交付的訂購量。
The purpose of this study is to minimize the present value of the joint expected total costs in an inventory model considering a fuzzy interest rate. In recent years, inventory policies have played a critical role in supply chain management in highly competitive environments. Therefore, this study aims at determining a suitable inventory policy to enhance the benefits of the supply chain. Reducing lead times and the associated inventory costs are vital concerns in supply chain management. However, most previous studies have not considered the effect of a time value.
In addition, this study develops an integrated inventory model that considers crashing costs and time values to reduce inventory problems. Therefore, this study applies a signed distance, a ranking approach used by fuzzy numbers to estimate the interest rate in order to represent real-world situations. Moreover, an algorithm is established to determine the optimal order quantity, the length of the lead time, and the number of lots that are delivered from the vendor to the buyer. Finally, a numerical example is provided to illustrate the solution procedure
摘要 i
ABSTRACT ii
誌謝辭 iii
目錄 iv
第一章 緒論 1
第一節 研究背景 1
第二節 研究動機與目的 2
第三節 研究流程與章節安排 4
第二章 文獻探討 5
第一節 整合型存貨模式 5
第二節 模糊理論 7
第三節 模糊存貨模式 11
第四節 模糊趕工成本 12
第三章 研究方法與模型建構 14
第一節 模糊理論相關定義與模型架構 14
第二節 整合型存貨基本模型架構 18
第三節 基本模式推演 20
第四章 考量趕工成本與模糊利率之整合性存貨模型 28
第一節 模型符號 28
第二節 研究基本假設 29
第三節 模型建構 29
第四節 求解程序 32
第五節 模型推演步驟 35
第五章 案例研究及敏感度分析 37
第一節 研究參數設定 37
第二節 案例敏感度分析 38
第三節 案例結果 40
第六章 研究結論 41
第一節 研究結論與研究意涵 41
第二節 未來研究展望 42
參考文獻 44
王文俊(2012)。認識Fuzzy 第三版。
李允中、王小璠、蘇木春(2012)。模糊理論及其應用第三版。
吳政達(2000)。台灣省高職實用技能班教育政策執行評估指標體系建構與應用。暨大學報,4(1),43-68。
林毅(2015)。運用模糊多目標模型於綠色供應鏈管理問題之研究。博士學位論文,國立台北科技大學管理學院管理博士班,台北市。
林金面 (2002)。營建管理學。文笙書局。
邱垂昱、翁佳麟(2004)。整合模糊多準則決策與灰色關聯之工作導向啟發式排程系統。台北科技大學學報,37(2)。
邱瑋民(2015)。專案趕工之時間、成本與安全的權衡分析。碩士學位論文,國立成功大學土木工程研究所。
陳振東、黃淑芬、林宜慶(2006)。以語意計算為基礎的模糊決策分析模式建構之研究。全球化暨國際企業研討會。
曾胤銓(2015)。考慮不等批量之整合存貨模式-以醫療院所為例。碩士學位論文,私立南臺科技大學管理與資訊系工業管理碩士班,台南市。
楊明峰(2006)。模糊整合存貨模式之研究。博士學位論文,國立台灣科技大學工業管理系,台北市。
蔡明君(2009)。模糊環境下專案趕工問題之分析探討。碩士學位論文,國立中正大學企業管理研究所,嘉義市。
藍俊雄、戴筱蓁、張仲甫(2009)。最適非線性專案趕工成本之研究。 南華大學企業管理系管理科學研究所。環境與管理研究所,9(2),75-96。
Arıkan, F. & Gungor, Z. (2001). An application of fuzzy goal programming to a multi-objective project network problem. Fuzzy Sets and Systems, 119, 49-58.
Banerjee, A. (1986). A joint economic lot size model for purchaser and vender. Decision Sciences, 17, 292-311.
Bardossy, A. (1988). Notes on the robustness of the kriging system. Mathematical Geology, 20, 189–203.
Chang, H. C. (2004). An application of fuzzy sets theory to the EOQ model with imperfect quality items. Computers & Operations Research, 31, 2079-2092.
Chang H. C. & Ouyang, L. Y. (2002). Determining the optimal inventory and investment strategies for quality improvement in the fuzzy sense. Information and Management Sciences, 13, 1-12.
Chen, S.H. & Wang, C. C. (1996). Backorder fuzzy inventory model under functional principle. Information Sciences, 95, 71-79.
Dubois, D. & Prade, H. (1983). Ranking fuzzy number in the setting of possibility theory. Information Science, 30, 183-22.
Fedrizzi, M. & Kacprzyk, J. (1988). On measuring consensus in the setting of fuzzy preference relations, Non-conventional preference relations in decision making. Lecture Notes in Economics and Mathematical Systems, 301, 129-141.
Ghazanfari, M., Yousefli, A., Jabal Ameli, M. S., & Bozorgi-Amiri, A. (2008). A new approach to solve time–cost trade-off problem with fuzzy decision variables. International Journal of Advanced Manufacturing Technology, 42(3), 408-414.
Goyal, S.K. (1976). An integrated inventory model for a single supplier-single customer problem. International Journal of Production Research, 15,107-111.
Goyal, S.K. (1988). A joint economic lot size model for purchaser and vendor: A comment. Decision Sciences, 19, 236-241.
Goyal, S.K. (1989). Integrated inventory models: The buyer-vendor coordination. European Journal of Operational Research, 41, 261-269.
Gunasekaran, A. (1999). Just-in-time purchasing: an investigation for research and applications. International Journal of Production Economics, 59, 77-84.
Ha, D. & Kim, S. L. (1997). Implementation of JIT purchasing: an integrated approach. Production Planning & Control, 8, 152-157.
Hill, R.M. & Omar, M. (2006). Another look at the single-vendor single-buyer integrated production-inventory problem. International Journal of Production Research, 44, 791-800.
Huang, C.K. (2002). An integrated vendor-buyer cooperative inventory model for items with imperfect quality. Production Planning & Control, 13, 355-361.
Kacprzyk, J., Fedrizzi, M. & Nurmi, H. (1992). Group decision making and consensus under fuzzy preferences and fuzzy majority. Fuzzy Sets and Systems, 49(1), 21-31.
Kaufmann, A. & Gupta, M. M. (1991). Introduction to fuzzy arithmetic: theory and applications, Van Nostrand Reinhold: New York.
kelly, J. E., Jr. (1961). Critical path planning and scheduling: mathematical basis. Operations Research, 9(3), 296-320.
Kelle, P., Pawlowski, S. & Akbulut, A. (2002). The influence of quantitative and organizational factors on the cooperation in supply chain. Twelfth International Working Seminar on Production Economics, Igls/Innsbruck Austria.
Klir, G. J. & Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic Theory and Application: Prentice Hall.
Lee, H. M. & Yao, J. S. (1998). Economic production quantity for fuzzy demand quantity and fuzzy production quantity. European Journal of Operational Research, 109, 203-211.
Leu, S. S., Chen, A. T. & Yang, C. H. (2001). A GA-based fuzzy optimal model for construction time-cost trade-off. International Journal Project Management, 19, 47-58.
Li, H. H. & Kao, W. F. (2015). An integrated inventory model with dependently polynomial crashing costs and a fuzzy interest rate. JMST-2015-101.
Liu, S. T. (2003). Fuzzy activity times in critical path and project crashing problems. Cybernetics and Systems, 34, 161-172.
Ming-Feng Yang, Yi Lin, Li Hsing Ho, Wei Feng Kao (2016). An integrated multiechelon logistics model with uncertain delivery lead time and quality unreliability. Mathematical Problems in Engineering, 2016, ID: 8494268.
Mon, D. L., Cheng, C. H., & Lu, H. C. (1995). Application of fuzzy distributions on project management. Fuzzy sets and Systems, 73, 227-234.
Pan, J. C. H. & Yang, J. S. (2004). A study of an integrated inventory with controllable lead time. International Journal of Production Research, 40, 1263-1273.
Park, K.S. (1987). Fuzzy-set theoretic interpretation of economic order quantity. IEEE Transactiona on Systems Man Cybernetics, 17, 1082-1084.
Roy, T. K. & Maiti, M. (1997). A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. European Journal of Operational Research, 99, 425-432.
Stefan, W., Stefan, S., Christophe, V. D. B. & Philip H. F. (2004). Vertical Marketing Systems for Complex Products: A Triadic Perspective. Journal of Marketing Research, 41, 479-487.
Tanino, T. (1984). Fuzzy preference orderings in group decision making. Fuzzy Sets and Systems, 12, 117-131.
Xu, R. & Zhai, X. Y. (1992). Extensions of the analytic hierarchy process in fuzzy environment. Fuzzy Sets and Systems, 52(3), 251-257.
Yang, J.S. & Pan, J.C.H. (2004). Just-in-time purchasing: an integrated inventory model involving deterministic variable lead time and quality improvement investment. International Journal of Production Research, 42, 853-864.
Yau, C. & Ritchie, E. (1990). Project compression: A method for speeding up resource constrained projects which preserve the activity schedule. European Journal of Operational Research, 49(1), 140-152.
Yao, J.S. & Wu, K. (2000). Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy Sets and Systems, 116, 275-288.
Yao, J. S., Chang, S. C. & Su, J. S. (2000). Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity. Computers & Operational Research, 27,935-962.
Zadeh, L. A. (1975). The concept of a Linguistic Variable and Its Applications to Reasoning. Information Science, 8, 249-291.
Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8, 338-353.
Zimmermann, H. J. (1996). Fuzzy set theory and its application (3rd ed.). Kluwer Academic Publishers Norwell, MA, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top