|
[1] R.L. Rich and D.G. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J Mol. Recognit., Vol. 18, Iss. 6, pp. 431–478, 2005. [2] D.R. Shankaran, K.V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B: Chem., Vol. 121, pp. 158–177, 2007. [3] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., Vol. 377, pp. 528–539, 2003. [4] A.L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, “Immunosensors: electrochemical sensing and other engineering approaches,” Biosens Bioelectron, Vol. 13, pp. 113–131, 1998. [5] X. Chu, Z.H. Lin, G.L. Shen, and R.Q. Yu, “Piezoelectric immunosensor for the detection of immunoglobulin M,” Analyst, Vol. 120, pp. 2829–2832, 1995. [6] G. Gauglitz, “Opto-chemical and opto-immuno sensors,” sensor update, Vol. 1, VCH, Weinheim, 1996. [7] J. Janata, Principles of chemical sensors, Plenum Press, New york, 1989. [8] C.A. Rowe-Taitt, J.W. Hazzard, K.E. Hoffman, J.J. Cras, J.P. Golden, and F.S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens Bioelectron, Vol. 15, pp. 579–589, 2000. [9] J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal Chem, Vol. 68, pp. 139–143, 1996. [10] D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens Actuators B, Vol. 19, pp. 581–586, 1994. [11] R. Cush , J.M. Cronin, W.J. Stewart, C.H. Maule, J. Molloy, and N.J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens Bioelectron, Vol. 8, pp. 347–353, 1993. [12] G. Jin, P. Tengvall, I. Lundström, and H. Arwin, “A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions,” Analytical Biochemistry, Vol. 232, pp. 69-72, 1995. [13] G. Boisde and A. Harmer, Chemical and Biochemical Sensing withOptical Fibers and waveguides, Artech House, Norwood, MA, 1996. [14] C.A. Rowe-Taitt, and F.S. Ligler, “Evanescent wave fiber optic Biosensors,” in F.S. Ligler and C.A. Rowe-Taitt, eds., Optical Biosensors: Present and Future, Elsevier, Amsterdam, pp. 57-94, 2002. [15] J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens Actuators B, Vol. 54, pp. 3–15, 1999. [16] R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett., Vol. 21, pp.1530-1533, 1968. [17] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin, 1988. [18] B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators, Vol. 4, pp. 299–304, 1983. [19] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., Vol. 377, pp. 528–539, 2003. [20] J. Homola, S.S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B: Chem., Vol. 54, pp. 3-15, 1999. [21] http://www.biacore.com [22] http://focus.ti.com/lit/an/slya015a/slya015a.pdf [23] http://www.ibis-spr.nl [24] http://www.micro-systems.de [25] Http://www.srubiosystems.com [26] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, Vol. 270, pp. 467–470, 1995. [27] M.B. Gavin and L.S. Stuart, “Printing proteins as microarrays for high-throughput function determination,” Science, Vol. 289, pp. 1760–1763, 2000. [28] X.D. Hoa, A.G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens Bioelectron, Vol. 23, pp. 151–160, 2007. [29] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, Vol. 391, pp.667–669, 1998. [30] S. Kawata, Near-Field Optics and Surface Plasmon Polaritons, first ed. Springer, New York, 2001. [31] H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, and T.W. Ebbesen, “Beaming light from a subwavelength aperture,” Science, Vol. 297, pp. 820-822, 2002. [32] A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, Vol. 20, pp. 4813-4815, 2004. [33] L. Pang, G.M. Hwang, B. Slutsky, Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett., Vol. 91, p. 123112, 2007. [34] C. Genet and T.W. Ebbesen, “Light in tiny holes,” Nature, Vol. 445, pp. 39-46, 2007. [35] P.K. Wei, H.L. Chou, and W.S. Fann, “Optical near field in nano metallic slits,” Opt. Express , Vol. 10, pp. 1418-1424, 2002. [36] S. Collin. F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Physical Review B, Vol. 63, p. 033107, 2001. [37] A. Moreau, C. Lafarge, N. Laurent, K. Edee and G. Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, 2007. [38] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett., Vol. 86, pp. 5601–5603, 2001. [39] Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett., Vol. 88, p. 057403, 2002. [40] W. Fritzsche1 and T.A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology, Vol. 14, p. R63, 2003. [41] N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem., Vol. 74, pp. 504-509, 2002. [42] R.L. Stears, T. Martinsky, and M. Schena, “Trends in microarray analysis,” Nat. Med., Vol. 9, pp. 140-145, 2003. [43] R.W. Wood, “On a remarkable case of uneven distribuction of light in a diffraction grating spectrum,” Philos. Mag., Vol. 4, pp. 396-402, 1902. [44] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfield’s waves),” J. Opt. Soc. Am., Vol. 31, pp. 213-222, 1941. [45] R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Physical Review B, Vol. 73, p. 153405, 2006. [46] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, second ed. Artech House, Boston, 2000. [47] M.A. McCord and M.J. Rooks, Handbook of Microlithography, Micromachining and Microfabrication, P. Rai-Choudhury, Ed. Bellingham, WA: SPIE Optical Engineering, ch. 2, pp. 139–249, 1997. [48] P.J. Revell and G.F. Goldspink, “A review of reactive ion beam etching for production,” Vacuum, Vol. 34, pp. 455-462, 1984. [49] H.A. Bethe, “Theory of diffraction by small holes,” Phys. Rev., Vol. 66, pp. 163–182, 1944. [50] A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, 2007. [51] P. Lalanne, J.C. Rodier and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt., Vol. 7, pp. 422–426, 2005. [52] Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett., Vol. 88, p. 057403, 2002. [53] A. Hessel and A.A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., Vol. 4, pp.1275-1297, 1965. [54] H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett., Vol. 94, p. 053901, 2005. [55] K.M. Chae, H.H. Lee, S.Y. Yim, and S.H. Park, “Evolution of electromagnetic interference through nano-metallic double-slit,” Opt. Express, Vol. 12, pp. 2870–2879, 2004. [56] J.M. McMahon, J. Henzie, T.W. Odom, G. C. Schatz, and S.K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express, Vol. 15, pp. 18119-18129, 2007. [57] C. Genet, M.P. van Exter, J.P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun., Vol. 225, pp. 331-336, 2003. [58] J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B., Vol. 68, p. 205103, 2003. [59] P.K. Wei a, H.L. Chou, Y.R.Cheng, C.H. Wei, W.S. Fann, and J. O. Tegenfeldt, “Beaming effect of optical near-field in multiple metallic slits with nanometric linewidth and micrometer pitch,” Opt. Commun., Vol. 253, pp. 198-204, 2005. [60] Y. Xie, A.R. Zakharian, J.V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express, Vol. 14, pp. 6400-6413, 2006. [61] E.D. Palik, Handbook of Optical Constants of Solids, II. Academic, New York, 1991. [62] K.L. Lee, C.W. Lee, W.S. Wang, and P.K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt., Vol. 12 , p. 044023, 2007. [63] T. Rindzevicius,Y. Alaverdyan, A. Dahlin, F. Hook, D.S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett., Vol. 5, pp. 2335–233, 2005. [64] A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D.S. Sutherland, and F. Hook, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc., Vol. 127, pp. 5043-5048, 2005. [65] A.B. Dahlin, J.O. Tegenfeldt, and F. Hook, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem., Vol. 78, pp. 4416–4423, 2006. [66] N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem., Vol. 74, pp. 504-509, 2002. [67] D.A. Stuart, A.J. Haes, C.R. Yonzon, E.M. Hicks, and R.P. Van Duyne, “Biological applications of localized surface plasmonic Phenomenae,” IEE Proc Nanobiotechnol, Vol. 152, pp. 13-22, 2005. [68] A.D. McFarland, and R.P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett., Vol. 3, pp. 1057-1062, 2003. [69] E.M. Hicks, X. Zhang, S. Zou, O. Lyandres, K.G. Spears, G.C. Schatz, and R.P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J Phys Chem B, Vol. 109, pp. 22351–22358, 2005. [70] M.B. Pepys, D.R. Booth, W.L. Hutchinson, J.R. Gallimore, P.M. Collins, and E. Hohenester, “Amyloid P component. A critical review,” Amyloid, Vol. 4, pp. 274–295, 1997. [71] K.L. Lee, W.S. Wang, and P.K. Wei, “Sensitive label-free biosensors by using gap plasmons in gold nanoslits,” Biosens Bioelectron, Vol. 24, pp. 210-215, 2008. [72] T.A. Taton, C.A. Mirkin, and R.L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science, Vol. 289, pp. 1757-1760, 2000. [73] M. Su, S. Li, and V.P. Dravid, “Microcantilever resonance-based DNA detection with nanoparticle probes,” Appl. Phys. Lett., Vol. 82, pp. 3562-3564, 2003. [74] K.L. Lee, C.W. Lee, and P.K. Wei, “Sensitive detection of nanoparticles using metallic nanoslit arrays,”Appl. Phys. Lett., Vol. 90, p. 233119, 2007. [75] Y.S. Jung, Z. Sun, H.K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett., Vol. 87, p. 263116, 2005. [76] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater., Vol. 2, p. 229, 2003. [77] C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, 1983. [78] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., Vol. 67, pp. 3114-3116, 1995. [79] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, Vol. 14, pp. 4129-4133, 1996. [80] C.M. Sotomayor Torres, S. Zankovych, J. Seekamp, A.P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M.V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng. C, Vol. 23, pp. 23-31, 2003.
|