跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李光立
研究生(外文):Kuang-Li Lee
論文名稱:光波在週期性奈米金屬結構之特性與其在生醫感測之應用
論文名稱(外文):The Properties of Optical Wave in Periodic Metallic Nanostructures and Its Application in Biosensing
指導教授:王維新王維新引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:104
中文關鍵詞:光學生物感測器夾縫電漿子表面電漿子共振奈米結構奈米金屬狹縫空腔膜態
外文關鍵詞:Optical biosensorsgap plasmonssurface plasmon resonancenanostructuresmetallic nanoslitscavity mode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:579
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討光波在奈米金屬單狹縫與週期性狹縫的光學特性,並且利用表面電漿子共振與夾縫電漿子共振製作出高靈敏度、免標定、高通量、晶片型態與可重複使用的新穎生物感測器,其單元檢測面積為100µm×100µm。在奈米金屬狹縫光學特性的研究中,利用電子束微影術及反應式離子蝕刻術在100 nm-200 nm金膜上製作週期400 nm-900 nm、狹縫寬度20 nm-200 nm的奈米金屬結構。實驗結果顯示,存在於狹縫中的夾縫電漿子共振在穿透光譜上呈現一半高寬較大的波峰,波峰位置受狹縫寬度及厚度影響;存在於狹縫外的表面電漿子共振對於光的穿透扮演著負面的角色,並在光譜上呈現一波谷。此外伴隨著波谷出現的波峰滿足Rayleigh異常現象的預測。這些波峰與波谷都會隨著環境折射率的改變而位移,因此可以應用於生物或化學檢測。在生物檢測的應用上,表面電漿子共振在水溶液環境中的折射率靈敏度達740 nm/RIU,同時對生物分子具有極佳的表面靈敏度。在比較表面電漿子與夾縫電漿子靈敏度的實驗中,由二氧化矽薄膜與醣體的檢測顯示夾縫電漿子有較佳的檢測能力,倘若光譜儀的解析度是0.1 nm,夾縫電漿子可以測得0.05 nm厚的二氧化矽薄膜厚度變化與分子量為4的生物分子。此外,夾縫電漿子的靈敏度與狹縫寬度有關,當狹縫由100 nm縮減至30 nm時,夾縫電漿子的靈敏度增加10倍,同時也高出表面電漿子的靈敏度約一個數量級。在檢測直徑為13 nm的奈米金球實驗中,夾縫電漿子在低奈米金球密度下的顆粒偵測靈敏度大約是表面電漿子的3倍。倘若光譜儀的解析度達0.1 nm或者燈源的強度穩定度達0.2%,夾縫電漿子的偵測靈敏度可達每平方微米一個粒子,此偵測能力與應用在DNA陣列檢測的螢光標定法的靈敏度每平方微米約0.5個螢光分子相當接近。因此,週期性奈米金屬狹縫可與奈米金屬顆粒標定法結合,以提升感測器的偵測極限,並應用於DNA及蛋白質陣列檢測。推測夾縫電漿子具有較佳靈敏度的可能原因是狹縫內的生物分子或奈米金球與夾縫電漿子具有較大的重疊積分。
In this dissertation, a detailed study of the optical properties of single metallic nanoslit and multiple metallic nanoslits is presented. In experiment, high sensitive, label-free, high-throughput, reusable, and chip-based biosensor arrays based on surface and gap plasmon resonance were fabricated and tested. In the study of optical properties of metallic nanostructures, metallic nanoslits with periods varying from 400 to 900 nm and widths ranging from 20 to 200 nm were fabricated on a thin gold film using e-beam lithography and reactive ion etching. The thickness of the gold film is varying from 100 to 200 nm and the area of the metallic nanoslit array is chosen as 100 µm×100 µm. Experimental results show that gap plasmon resonance in the slit generates a peak with a broader full-width half-maximum in the transmission spectrum and the peak wavelength is affected by slit width and film thickness. That’s due to surface plasmon resonances outside the slit play a negative role in optical transmission and present a dip in the transmission spectrum. Besides, a peak accompanying an SPR dip can be predicted by Rayleight anomaly. The peaks or dip is sensitive to the refractive index change of the environment and can be applied in biological or chemical sensing. In the application of biological detection, SPR biosensor achieved a detection sensitivity of up to 740 nm per refractive index unit and an antigen–antibody interaction experiment in an aqueous environment verified the sensitivity in a surface binding event. The surface sensitivities of surface and gap plasmons were compared by coating a thin SiO2 film and different biomolecules on the nanoslit arrays. Experimental results show gap plasmons are more sensitive than conventional surface plasmons. The gap plasmons can detect a 0.05 nm-thick SiO2 film and ~4 Da-sized biomolecules attached to the surface when the resolution of a spectrometer is 0.1 nm. Besides, its detection sensitivity is increased with the decrease of the slit width. The gap plasmon is one order of magnitude more sensitive than the surface plasmon for slit widths smaller than 30 nm. In the 13-nm-diameter gold nanoparticle detection, gap plasmon is 3 times more sensitive than surface plasmon. A detection sensitivity of 1 particle/µm2 was achieved with a 0.1 nm wavelength shift or a 0.2% peak intensity change. This sensitivity is comparable with that of the fluorescent dyes ~0.5 fluors/µm2 used in DNA microarrays. Such a high sensitivity is attributed to the large overlap between biomolecules or nanoparticles and nanometer-sized gap plasmons.
口試委員會審定書 I
誌謝 II
中文摘要 III
英文摘要 V
目錄 VII
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1研究背景 1
1-2研究動機 3
1-3內容簡介 4
第二章 金屬的電漿共振模態與激發 6
2-1表面電漿子簡介 6
2-2表面電漿子的激發 11
2-3表面電漿耦合共振模態 13
第三章 有限時域差分法理論計算 14
3-1有限時域差分法簡介 14
3-2計算結果 19
第四章 奈米金屬結構之製作與特性量測 23
4-1電子束微影技術簡介 23
4-2反應式離子蝕刻術簡介 25
4-3奈米金屬結構之製作 26
4-4量測系統架設 35
第五章 奈米金屬結構之光學特性 37
5-1奈米金屬單狹縫光學特性 37
5-2週期性奈米金屬狹縫光學特性 43
第六章 奈米金屬狹縫在生醫感測之應用 66
6-1奈米金屬狹縫表面電漿子共振生物感測器陣列 66
6-2高靈敏度奈米金屬狹縫夾縫電漿子共振生物感測器 75
6-3奈米金屬顆粒之檢測 83
參考文獻 96
[1] R.L. Rich and D.G. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J Mol. Recognit., Vol. 18, Iss. 6, pp. 431–478, 2005.
[2] D.R. Shankaran, K.V. Gobi, and N. Miura, “Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest,” Sens. Actuators B: Chem., Vol. 121, pp. 158–177, 2007.
[3] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., Vol. 377, pp. 528–539, 2003.
[4] A.L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, “Immunosensors: electrochemical sensing and other engineering approaches,” Biosens Bioelectron, Vol. 13, pp. 113–131, 1998.
[5] X. Chu, Z.H. Lin, G.L. Shen, and R.Q. Yu, “Piezoelectric immunosensor for the detection of immunoglobulin M,” Analyst, Vol. 120, pp. 2829–2832, 1995.
[6] G. Gauglitz, “Opto-chemical and opto-immuno sensors,” sensor update, Vol. 1, VCH, Weinheim, 1996.
[7] J. Janata, Principles of chemical sensors, Plenum Press, New york, 1989.
[8] C.A. Rowe-Taitt, J.W. Hazzard, K.E. Hoffman, J.J. Cras, J.P. Golden, and F.S. Ligler, “Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor,” Biosens Bioelectron, Vol. 15, pp. 579–589, 2000.
[9] J. Piehler, A. Brecht, and G. Gauglitz, “Affinity detection of low molecular weight analytes,” Anal Chem, Vol. 68, pp. 139–143, 1996.
[10] D. Clerc and W. Lukosz, “Integrated optical output grating coupler as biochemical sensor,” Sens Actuators B, Vol. 19, pp. 581–586, 1994.
[11] R. Cush , J.M. Cronin, W.J. Stewart, C.H. Maule, J. Molloy, and N.J. Goddard, “The resonant mirror: a novel optical biosensor for direct sensing of biomolecular interactions Part I: Principle of operation and associated instrumentation,” Biosens Bioelectron, Vol. 8, pp. 347–353, 1993.
[12] G. Jin, P. Tengvall, I. Lundström, and H. Arwin, “A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions,” Analytical Biochemistry, Vol. 232, pp. 69-72, 1995.
[13] G. Boisde and A. Harmer, Chemical and Biochemical Sensing withOptical Fibers and waveguides, Artech House, Norwood, MA, 1996.
[14] C.A. Rowe-Taitt, and F.S. Ligler, “Evanescent wave fiber optic Biosensors,” in F.S. Ligler and C.A. Rowe-Taitt, eds., Optical Biosensors: Present and Future, Elsevier, Amsterdam, pp. 57-94, 2002.
[15] J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens Actuators B, Vol. 54, pp. 3–15, 1999.
[16] R.H. Ritchie, E.T. Arakawa, J.J. Cowan, and R.N. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett., Vol. 21, pp.1530-1533, 1968.
[17] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer-Verlag, Berlin, 1988.
[18] B. Liedberg, C. Nylander, and I. Lunstrom, “Surface plasmons resonance for gas detection and biosensing,” Sens. Actuators, Vol. 4, pp. 299–304, 1983.
[19] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., Vol. 377, pp. 528–539, 2003.
[20] J. Homola, S.S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B: Chem., Vol. 54, pp. 3-15, 1999.
[21] http://www.biacore.com
[22] http://focus.ti.com/lit/an/slya015a/slya015a.pdf
[23] http://www.ibis-spr.nl
[24] http://www.micro-systems.de
[25] Http://www.srubiosystems.com
[26] M. Schena, D. Shalon, R.W. Davis, and P.O. Brown, “Quantitative monitoring of gene expression patterns with a complementary DNA microarray,” Science, Vol. 270, pp. 467–470, 1995.
[27] M.B. Gavin and L.S. Stuart, “Printing proteins as microarrays for high-throughput function determination,” Science, Vol. 289, pp. 1760–1763, 2000.
[28] X.D. Hoa, A.G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress,” Biosens Bioelectron, Vol. 23, pp. 151–160, 2007.
[29] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, Vol. 391, pp.667–669, 1998.
[30] S. Kawata, Near-Field Optics and Surface Plasmon Polaritons, first ed. Springer, New York, 2001.
[31] H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, and T.W. Ebbesen, “Beaming light from a subwavelength aperture,” Science, Vol. 297, pp. 820-822, 2002.
[32] A.G. Brolo, R. Gordon, B. Leathem, and K.L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, Vol. 20, pp. 4813-4815, 2004.
[33] L. Pang, G.M. Hwang, B. Slutsky, Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett., Vol. 91, p. 123112, 2007.
[34] C. Genet and T.W. Ebbesen, “Light in tiny holes,” Nature, Vol. 445, pp. 39-46, 2007.
[35] P.K. Wei, H.L. Chou, and W.S. Fann, “Optical near field in nano metallic slits,” Opt. Express , Vol. 10, pp. 1418-1424, 2002.
[36] S. Collin. F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Physical Review B, Vol. 63, p. 033107, 2001.
[37] A. Moreau, C. Lafarge, N. Laurent, K. Edee and G. Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, 2007.
[38] Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett., Vol. 86, pp. 5601–5603, 2001.
[39] Q. Cao, P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett., Vol. 88, p. 057403, 2002.
[40] W. Fritzsche1 and T.A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology, Vol. 14, p. R63, 2003.
[41] N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface,” Anal. Chem., Vol. 74, pp. 504-509, 2002.
[42] R.L. Stears, T. Martinsky, and M. Schena, “Trends in microarray analysis,” Nat. Med., Vol. 9, pp. 140-145, 2003.
[43] R.W. Wood, “On a remarkable case of uneven distribuction of light in a diffraction grating spectrum,” Philos. Mag., Vol. 4, pp. 396-402, 1902.
[44] U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfield’s waves),” J. Opt. Soc. Am., Vol. 31, pp. 213-222, 1941.
[45] R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Physical Review B, Vol. 73, p. 153405, 2006.
[46] A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, second ed. Artech House, Boston, 2000.
[47] M.A. McCord and M.J. Rooks, Handbook of Microlithography, Micromachining and Microfabrication, P. Rai-Choudhury, Ed. Bellingham, WA: SPIE Optical Engineering, ch. 2, pp. 139–249, 1997.
[48] P.J. Revell and G.F. Goldspink, “A review of reactive ion beam etching for production,” Vacuum, Vol. 34, pp. 455-462, 1984.
[49] H.A. Bethe, “Theory of diffraction by small holes,” Phys. Rev., Vol. 66, pp. 163–182, 1944.
[50] A. Moreau, C. Lafarge, N. Laurent, K. Edee, and G. Granet, “Enhanced transmission of slit arrays in an extremely thin metallic film,” J. Opt. A: Pure Appl. Opt., Vol. 9, pp. 165-169, 2007.
[51] P. Lalanne, J.C. Rodier and J.P. Hugonin, “Surface plasmons of metallic surfaces perforated by nanohole arrays,” J. Opt. A: Pure Appl. Opt., Vol. 7, pp. 422–426, 2005.
[52] Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett., Vol. 88, p. 057403, 2002.
[53] A. Hessel and A.A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt., Vol. 4, pp.1275-1297, 1965.
[54] H.F. Schouten, N. Kuzmin, G. Dubois, T.D. Visser, G. Gbur, P.F.A. Alkemade, H. Blok, G.W. Hooft, D. Lenstra, and E.R. Eliel, “Plasmon-assisted two-slit transmission: Young’s experiment revisited,” Phys. Rev. Lett., Vol. 94, p. 053901, 2005.
[55] K.M. Chae, H.H. Lee, S.Y. Yim, and S.H. Park, “Evolution of electromagnetic interference through nano-metallic double-slit,” Opt. Express, Vol. 12,
pp. 2870–2879, 2004.
[56] J.M. McMahon, J. Henzie, T.W. Odom, G. C. Schatz, and S.K. Gray, “Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons,” Opt. Express, Vol. 15, pp. 18119-18129, 2007.
[57] C. Genet, M.P. van Exter, J.P. Woerdman, "Fano-type interpretation of red shifts and red tails in hole array transmission spectra," Opt. Commun., Vol. 225, pp. 331-336, 2003.
[58] J.M. Steele, C.E. Moran, A. Lee, C.M. Aguirre, and N.J. Halas, “Metallodielectric gratings with subwavelength slots: Optical properties,” Phys. Rev. B., Vol. 68, p. 205103, 2003.
[59] P.K. Wei a, H.L. Chou, Y.R.Cheng, C.H. Wei, W.S. Fann, and J. O. Tegenfeldt, “Beaming effect of optical near-field in multiple metallic slits with nanometric linewidth and micrometer pitch,” Opt. Commun., Vol. 253, pp. 198-204, 2005.
[60] Y. Xie, A.R. Zakharian, J.V. Moloney, and M. Mansuripur, “Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,” Opt. Express, Vol. 14, pp. 6400-6413, 2006.
[61] E.D. Palik, Handbook of Optical Constants of Solids, II. Academic, New York, 1991.
[62] K.L. Lee, C.W. Lee, W.S. Wang, and P.K. Wei, “Sensitive biosensor array using surface plasmon resonance on metallic nanoslits,” J. Biomed. Opt., Vol. 12 , p. 044023, 2007.
[63] T. Rindzevicius,Y. Alaverdyan, A. Dahlin, F. Hook, D.S. Sutherland, and M. Kall, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett., Vol. 5, pp. 2335–233, 2005.
[64] A. Dahlin, M. Zach, T. Rindzevicius, M. Kall, D.S. Sutherland, and F. Hook, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc., Vol. 127, pp. 5043-5048, 2005.
[65] A.B. Dahlin, J.O. Tegenfeldt, and F. Hook, “Improving the instrumental resolution of sensors based on localized surface plasmon resonance,” Anal. Chem., Vol. 78, pp. 4416–4423, 2006.
[66] N. Nath and A. Chilkoti, “A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real-time on a surface,” Anal. Chem., Vol. 74, pp. 504-509, 2002.
[67] D.A. Stuart, A.J. Haes, C.R. Yonzon, E.M. Hicks, and R.P. Van Duyne, “Biological applications of localized surface plasmonic Phenomenae,” IEE Proc Nanobiotechnol, Vol. 152, pp. 13-22, 2005.
[68] A.D. McFarland, and R.P. Van Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano. Lett., Vol. 3, pp. 1057-1062, 2003.
[69] E.M. Hicks, X. Zhang, S. Zou, O. Lyandres, K.G. Spears, G.C. Schatz, and R.P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J Phys Chem B, Vol. 109, pp. 22351–22358, 2005.
[70] M.B. Pepys, D.R. Booth, W.L. Hutchinson, J.R. Gallimore, P.M. Collins, and E. Hohenester, “Amyloid P component. A critical review,” Amyloid, Vol. 4, pp. 274–295, 1997.
[71] K.L. Lee, W.S. Wang, and P.K. Wei, “Sensitive label-free biosensors by using gap plasmons in gold nanoslits,” Biosens Bioelectron, Vol. 24, pp. 210-215, 2008.
[72] T.A. Taton, C.A. Mirkin, and R.L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science, Vol. 289, pp. 1757-1760, 2000.
[73] M. Su, S. Li, and V.P. Dravid, “Microcantilever resonance-based DNA detection with nanoparticle probes,” Appl. Phys. Lett., Vol. 82, pp. 3562-3564, 2003.
[74] K.L. Lee, C.W. Lee, and P.K. Wei, “Sensitive detection of nanoparticles using metallic nanoslit arrays,”Appl. Phys. Lett., Vol. 90, p. 233119, 2007.
[75] Y.S. Jung, Z. Sun, H.K. Kim, and J. Blachere, “Blueshift of surface plasmon resonance spectra in anneal-treated silver nanoslit arrays,” Appl. Phys. Lett., Vol. 87, p. 263116, 2005.
[76] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater., Vol. 2, p. 229, 2003.
[77] C.F. Bohren and D.R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley Interscience, New York, 1983.
[78] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., Vol. 67, pp. 3114-3116, 1995.
[79] S.Y. Chou, P.R. Krauss, and P.J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B, Vol. 14, pp. 4129-4133, 1996.
[80] C.M. Sotomayor Torres, S. Zankovych, J. Seekamp, A.P. Kam, C. Clavijo Cedeño, T. Hoffmann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M.V. Maximov, and B. Heidari, “Nanoimprint lithography: an alternative nanofabrication approach,” Mater. Sci. Eng. C, Vol. 23, pp. 23-31, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top