1.王怡惠, 從工業 4.0 看我國生產力 4.0 之挑戰. 臺灣經濟研究月刊, 2015. 38(8): p. 111-119.2.馬遠榮, 奈米科技. 2002: 商周出版.
3.尹邦躍, 奈米時代. 2002: 五南圖書出版股份有限公司.
4.林景正 and 賴宏仁, 奈米材料技術與發展趨勢. 工業材料, 1999. 153: p. 95-101.5.李思毅, 李佳穎, and 曾俊元, 奈米材料的製程及其潛在的應用. 物理雙月刊, 2004. 26(3): p. 473-482.6.王世敏, 許祖勛, and 傅晶, 奈米材料原理與製備. 2004: 五南圖書出版股份有限公司.
7.蘇俊榮, 小小的奈米線大大的應用. 國家奈米元件實驗室奈米通訊, 2015. 22(4): p. 18-22.
8.Barth, S., F. Hernandez-Ramirez, J.D. Holmes, and A. Romano-Rodriguez, Synthesis and applications of one-dimensional semiconductors. Progress in Materials Science, 2010. 55(6): p. 563-627.
9.Dinh, D.A., K.N. Hui, K. Hui, P. Kumar, and J. Singh, Silver nanowires: A promising transparent conducting electrode material for optoelectronic and electronic applications. Adv. Sci. Eng, 2013. 2: p. 1-22.
10.Cao, G. and D. Liu, Template-based synthesis of nanorod, nanowire, and nanotube arrays. Advances in colloid and interface science, 2008. 136(1): p. 45-64.
11.Mijangos, C., R. Hernández, and J. Martín, A review on the progress of polymer nanostructures with modulated morphologies and properties, using nanoporous AAO templates. Progress in Polymer Science, 2016. 54: p. 148-182.
12.Huang, C.F., Y. Lin, Y.K. Shen, and Y. Fan, Optimal processing for hydrophobic nanopillar polymer surfaces using nanoporous alumina template. Applied Surface Science, 2014. 305: p. 419-426.
13.Priecel, P., H.A. Salami, R.H. Padilla, Z. Zhong, and J.A. Lopez-Sanchez, Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chinese Journal of Catalysis, 2016. 37(10): p. 1619-1650.
14.Zhang, H., D. Yang, X. Ma, N. Du, J. Wu, and D. Que, Straight and thin ZnO nanorods: hectogram-scale synthesis at low temperature and cathodoluminescence. The Journal of Physical Chemistry B, 2006. 110(2): p. 827-830.
15.Mao, Y., C. Wang, and H. Yang, Rapid and uniform synthesis of silver nanowires via rice-shaped silver nucleant. Materials Letters, 2015. 142: p. 102-105.
16.Baek, M., S. Park, and D. Choi, Synthesis of zirconia (ZrO 2) nanowires via chemical vapor deposition. Journal of Crystal Growth, 2017. 459: p. 198-202.
17.Ye, Z., T. Wang, S. Wu, X. Ji, and Q. Zhang, Na-doped ZnO nanorods fabricated by chemical vapor deposition and their optoelectrical properties. Journal of Alloys and Compounds, 2017. 690: p. 189-194.
18.Liu, Z., S. Tian, J. Yang, H. Liu, X. Liu, H. Jia, and B. Xu, Sulfur ion-induced shape evolution of Ag nanocrystals by microwave-assisted polyol process. Materials Letters, 2016. 164: p. 647-650.
19.Sridharan, K., N. Roy, R. Philip, and T.J. Park, Anomalous growth of multi-phased and multi-dimensional Manganese oxide–Metal (Fe, Co and Ni) oxide nanostructures: Synthesis and optical limiting properties. Journal of Alloys and Compounds, 2014. 611: p. 82-90.
20.Guo, H., N. Lin, Y. Chen, Z. Wang, Q. Xie, T. Zheng, N. Gao, S. Li, J. Kang, and D. Cai, Copper nanowires as fully transparent conductive electrodes. Scientific reports, 2013. 3: p. 2323.
21.Arief, I. and P. Mukhopadhyay, Amphiphilic triblock copolymer-assisted synthesis of hierarchical NiCo nanoflowers by homogeneous nucleation in liquid polyols. Journal of Magnetism and Magnetic Materials, 2014. 372: p. 214-223.
22.Shahzadi, K., L. Wu, X. Ge, F. Zhao, H. Li, S. Pang, Y. Jiang, J. Guan, and X. Mu, Preparation and characterization of bio-based hybrid film containing chitosan and silver nanowires. Carbohydrate polymers, 2016. 137: p. 732-738.
23.Yang, C., H. Gu, W. Lin, M.M. Yuen, C.P. Wong, M. Xiong, and B. Gao, Silver nanowires: from scalable synthesis to recyclable foldable electronics. Advanced materials, 2011. 23(27): p. 3052-3056.
24.Lin, J.-Y., Y.-L. Hsueh, J.-J. Huang, and J.-R. Wu, Effect of silver nitrate concentration of silver nanowires synthesized using a polyol method and their application as transparent conductive films. Thin Solid Films, 2015. 584: p. 243-247.
25.Nghia, N.V., N.N. Truong, N.M. Thong, and N.P. Hung, Synthesis of nanowire-shaped silver by polyol process of sodium chloride. International Journal of Materials and Chemistry, 2012. 2(2): p. 75-78.
26.Johan, M.R., N.A.K. Aznan, S.T. Yee, I.H. Ho, S.W. Ooi, N.D. Singho, and F. Aplop, Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl 2 and NaCl) polyol process. Journal of Nanomaterials, 2014. 2014: p. 54.
27.Lee, H.S., Y.W. Kim, J.E. Kim, S.W. Yoon, T.Y. Kim, J.-S. Noh, and K.S. Suh, Synthesis of dimension-controlled silver nanowires for highly conductive and transparent nanowire films. Acta Materialia, 2015. 83: p. 84-90.
28.Fereshteh, Z., R. Rojaee, and A. Sharifnabi, Effect of different polymers on morphology and particle size of silver nanoparticles synthesized by modified polyol method. Superlattices and Microstructures, 2016. 98: p. 267-275.
29.Xue, J., J. Song, Y. Dong, L. Xu, J. Li, and H. Zeng, Nanowire-based transparent conductors for flexible electronics and optoelectronics. Science Bulletin, 2016.
30.He, L. and S.C. Tjong, Nanostructured transparent conductive films: fabrication, characterization and applications. Materials Science and Engineering: R: Reports, 2016. 109: p. 1-101.
31.Hu, L., H.S. Kim, J.-Y. Lee, P. Peumans, and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS nano, 2010. 4(5): p. 2955-2963.
32.Zeng, X.Y., Q.K. Zhang, R.M. Yu, and C.Z. Lu, A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Advanced materials, 2010. 22(40): p. 4484-4488.
33.Cortes, L.Q., S. Racagel, A. Lonjon, E. Dantras, and C. Lacabanne, Electrically conductive carbon fiber/PEKK/silver nanowires multifunctional composites. Composites Science and Technology, 2016. 137: p. 159-166.
34.Kumar, A. and C. Zhou, The race to replace tin-doped indium oxide: which material will win? ACS nano, 2010. 4(1): p. 11-14.
35.Cairns, D.R. and G.P. Crawford, Electromechanical properties of transparent conducting substrates for flexible electronic displays. Proceedings of the IEEE, 2005. 93(8): p. 1451-1458.
36.Lan, Y.-F., Y.-H. Chen, J.-L. He, and J.-T. Chang, Microstructural characterization of high-quality indium tin oxide films deposited by thermionically enhanced magnetron sputtering at low temperature. Vacuum, 2014. 107: p. 56-61.
37.He, W. and C. Ye, Flexible Transparent Conductive Films on the Basis of Ag Nanowires: Design and Applications: A Review. Journal of Materials Science & Technology, 2015. 31(6): p. 581-588.
38.Song, Y.-J., J. Chen, J.-Y. Wu, and T. Zhang, Applications of silver nanowires on transparent conducting film and electrode of electrochemical capacitor. Journal of Nanomaterials, 2014. 2014: p. 5.
39.Madaria, A.R., A. Kumar, and C. Zhou, Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology, 2011. 22(24): p. 245201.
40.Kim, T., Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, and K.S. Suh, Uniformly interconnected silver‐nanowire networks for transparent film heaters. Advanced Functional Materials, 2013. 23(10): p. 1250-1255.
41.Liu, C.-H. and X. Yu, Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale research letters, 2011. 6(1): p. 75.
42.Khaligh, H.H., K. Liew, Y. Han, N.M. Abukhdeir, and I.A. Goldthorpe, Silver nanowire transparent electrodes for liquid crystal-based smart windows. Solar Energy Materials and Solar Cells, 2015. 132: p. 337-341.
43.Madaria, A.R., A. Kumar, F.N. Ishikawa, and C. Zhou, Uniform, highly conductive, and patterned transparent films of a percolating silver nanowire network on rigid and flexible substrates using a dry transfer technique. Nano Research, 2010. 3(8): p. 564-573.
44.Wang, Y., T. Feng, K. Wang, M. Qian, Y. Chen, and Z. Sun, A facile method for preparing transparent, conductive, and paper-like silver nanowire films. Journal of Nanomaterials, 2011. 2011: p. 2.
45.Park, M., Y. Sohn, W.G. Shin, J. Lee, and S.H. Ko, Ultrasonication assisted production of silver nanowires with low aspect ratio and their optical properties. Ultrasonics sonochemistry, 2015. 22: p. 35-40.
46.Song, J., Y. Huang, Y. Fan, Z. Zhao, W. Yu, B.A. Rasco, and K. Lai, Detection of prohibited fish drugs using silver nanowires as substrate for surface-enhanced Raman scattering. Nanomaterials, 2016. 6(9): p. 175.