|
American Lung Association. (2012). Lung Cancer Fact Sheet, Washington, DC, USA [Online]. Available: http://seer.cancer.gov/statfacts/html/lungb.html Balabanian JP, Viola I, and Groller ME., Interactive illustrative visualization of hierarchical volume data. In Proceedings of Graphics Interface 2010, pages 137–144, 2010. Criminisi, A., Shotton, J., 2013(a). Decision Forests for Computer Vision and Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer. Criminisi A, Robertson D, Konukoglu E, Shotton J, Pathak S, White S, Siddiqui K. Regression forests for efficient anatomy detection and localization in computed tomography scans. Med Image Anal. 2013(b) Dec;17(8):1293-303. Crouzet, S.M., and Serre, T., “What are the Visual Features Underlying Rapid Object Recognition?,” Frontiers in Psychology 2, (2011). Dehmeshki, J., Amin, H., Valdivieso, M., Ye, X.: Segmentation of pulmonary nodules in thoracic CT scans: a region growing approach. IEEE Trans Med Imaging. 27, 467–80 (2008) El-Baz, A., Nitzken, M., Khalifa, F., Elnakib, A., Gimel’farb, G., Falk, R., Abo El-Ghar, M.: 3D Shape Analysis for Early Diagnosis of Malignant Lung Nodules. In: Sz’ekely, G., Hahn, H.K. (eds.) IPMI 2011, LNCS, vol. 6801, pp. 772–783. Springer, Heidelberg (2011) El-Baz A, Beache GM, Gimel''farb G, et al. Computer-aided diagnosis systems for lung cancer: challenges and methodologies. Int J Biomed Imaging 2013;2013:942353. Gavrielides MA, Kinnard LM, Myers KJ, Petrick N. Noncalcified lung nodules: volumetric assessment with thoracic CT. Radiology. 2009 Apr;251(1):26-37. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. New York, NY : Springer, 2009. Kim, K.G., Goo, J.M., Kim, J.H., Lee, H.J., Min, B.G., Bae, K.T., Im, J.G.: Computer-aided Diagnosis of Localized Ground-Glass Opacity in the Lung at CT: Initial Experience. Radiology 237, 657–661 (2005) Klein A, Hirsch J., Mindboggle: a scatterbrained approach to automate brain labeling. Neuroimage. 2005 Jan 15;24(2):261-80. McWilliams A, Tammemagi MC, Mayo JR, Roberts H, Liu G, Soghrati K, Yasufuku K, Martel S, Laberge F, Gingras M, Atkar-Khattra S, Berg CD, Evans K, Finley R, Yee J, English J, Nasute P, Goffin J, Puksa S, Stewart L, Tsai S, Johnston MR, Manos D, Nicholas G, Goss GD, Seely JM, Amjadi K, Tremblay A, Burrowes P, MacEachern P, Bhatia R, Tsao MS, Lam S. Probability of cancer in pulmonary nodules detected on first screening CT. N Engl J Med. 2013 Sep 5;369(10):910-9. doi: 10.1056/NEJMoa1214726. Naidich DP, Bankier AA, MacMahon H, et al. Recommendations for the management of subsolid pulmonary nodules detected at CT: a statement from the Fleischner Society. Radiology 2013;266(1):304–317. Park CM, Goo JM, Lee HJ, Lee CH, Chun EJ, Im JG. Nodular ground-glass opacity at thin-section CT: histologic correlation and evaluation of change at follow-up. Radiographics. 2007 Mar-Apr;27(2):391-408. Pathak S, Criminisi A, White S, Munasinghe I, Sparks B, Robertson D, and Siddiqui K, “Automatic semantic annotation and validation of anatomy in DICOM CT images,” in SPIE Medical Imaging, 7967, 2011. Suzuki K, Li F, Sone S, Doi K. Computer-aided diagnostic scheme for distinction between benign and malignant nodules in thoracic low-dose CT by use of massive training artificial neural network. IEEE Trans Med Imaging 2005;24(9):1138-1150. Tsou CH, Lor KL, Chang YC, and Chen CM., Region-based graph cut using hierarchical structure with application to ground-glass opacity pulmonary nodules segmentation. Proc. SPIE 8669, Medical Imaging 2013: Image Processing, 866906 (March 13, 2013). Webb WR, Muller NL, Naidich DP. High Resolution CT of the Lung. Second edition, Lippincott-Raven Publishers, Philadelphia, 1996. Wu, D., Lu, L., Bi, J., Shinagawa, Y., Boyer, K., Krishnan, A., Salganicoff, M.: Stratified learning of local anatomical context for lung nodules in CT images. In: CVPR, pp. 2791–2798 (2010) Yanagawa M, Tanaka Y, Leung AN, Morii E, Kusumoto M, Watanabe S, Watanabe H, Inoue M, Okumura M, Gyobu T, Ueda K, Honda O, Sumikawa H, Johkoh T, Tomiyama N. Prognostic Importance of Volumetric Measurements in Stage I Lung Adenocarcinoma. Radiology. 2014 Apr 6:131903. Zheng, Y., Kambhamettu, C., Bauer, T., Steiner, K.: Estimation of Ground-Glass Opacity Measurement in CT Lung Images. In: Metaxas, D. et al. (eds.) MICCAI 2008, Part II, LNCS, vol. 5242, pp. 238–245. Springer, Heidelberg (2008)
|