跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 06:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:宋家裕
研究生(外文):JIA-YU SANG
論文名稱:開發反射式光波導粒子電漿共振生物感測平台
論文名稱(外文):Development of Reflection-Based Optical Waveguide Particle Plasmon Resonance Biosensing Platforms
指導教授:周禮君周禮君引用關係
指導教授(外文):Lai-Kwan Chau
口試委員:黃則達王崇仁黃俊仁
口試委員(外文):Tze-Ta HuangChurng-Ren Chris WangChun-Jen Huang
口試日期:2016-07-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:96
中文關鍵詞:粒子電漿共振奈米金棒奈米金粒子生物感測器
外文關鍵詞:particle plasmon resonancegold nanorodsgold nanoparticlesbiosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本研究之主要研究目的為:改良反射式管狀波導粒子電漿共振 (Reflection-based tubular waveguide particle plasmon resonance, RTW-PPR)生物感測平台,並以此作為基礎,結合實驗室所開發的光纖式粒子電漿共振(Fiber optic particle plasmon resonance, FO-PPR)生物感測平台,發展出新穎之反射式光纖粒子電漿共振(Reflection-based fiber optic particle plasmon resonance, RFO-PPR)生物感測平台。
此兩套感測平台皆是利用在貴金屬奈米粒子電漿共振(Particle Plasmon Resonance, PPR)作為感測機制,透過將貴金屬奈米粒子修飾於光波導基材表面,導入合適之粒子電漿共振波段之激發光源,藉由全內反射並產生漸逝波現象,與基材表面修飾的貴金屬奈米粒子產生粒子電漿共振,當樣品的折射率改變或是藉由貴金屬奈米粒子表面修飾上不同的生化分子,進行特異性吸附之生化反應後所產生的環境折射率變化時,電漿共振訊號將會隨之變化,利用量測光強度變化達成偵測效果。
RTW-PPR部分,藉由3-mercaptopropylsilatrane , MPS減少修飾所需要的時間,並改以塑膠管(Poly(methyl methacrylate, PMMA)作為感測元件。透過折射率實驗驗證其檢測效能,結果顯示平台對於折射率變化的感測解析度約為4.34×10-5 RIU,感測靈敏度為5.39 RIU-1。在生化檢測實驗上,利用卵白蛋白(ovalbumin, OVA)對卵白蛋白抗體(anti-OVA)進行檢測,其檢量線之迴歸係數(R2) > 0.99,偵測極限可達 4.64×10-6 g/mL (3.09×10-8 M)。
另一方面,本研究亦完成反射式光纖粒子電漿共振 (RFO-PPR)生物感測平台之初步開發。透過折射率實驗,證實球型金奈米以及棒狀金奈米等兩種感測元件,對於介電常數之變化(折射率)皆具有良好之線性關係(R2>0.99),其感測靈敏度分別為4.83 RIU-1及3.81 RIU-1,感測解析度(SR)可達到4.6×10-5 RIU及3.7×10-5 RIU。亦透過偵測多濃度anti-DNP標準品,檢測該平台對於生化分子之感測能力。結果顯示該平台對 anti-DNP 標準品之偵測極限(LOD)為8.57×10-8 g/mL (3.88×10-10 M)。
此結果成功的驗證RTW-PPR或是RFO-PPR生物感測平台的可行性,且皆具有免標定、即時偵測、體積微小化、高靈敏度等優點,期望在未來能夠進一步應用於疾病篩檢或是臨床檢驗。

The objectives of this work are to develop two novel multiplex chemical and biochemical sensing platforms, namly a reflection-based tubular waveguide particle plasmon resonance (RTW-PPR) biosensing platform, and a reflection-based fiber optic particle plasmon resonance (RFO-PPR) biosensing platform. The principle of inventions are based on measuring the light intensity after consecutive total internal reflections (TIRs) along a noble metal nanoparticles-modified waveguide (tube or optical fiber), wherein the evanescent wave excites the particle plasmon resonance of the nanoparticles at the reflection interface. When a noble metal nanoparticle is influenced by the change of the refractive index on its surrounding environment, its particle plasmon resonance condition will change. This phenomenon can be used as the basis of chemical and biological sensing.
In the first part :we used Poly(methyl methacrylate) PMMA as waveguide material to form a tubular waveguide and utilized 3-mercaptopropylsilatrane (MPS) to reduce the modification time. A variety of experiments were carried out to validate the sensitivity and refractive index resolution of the sensing platform. Using different weight percent of sucrose in pure water as samples, a refractive index resolution of 4.34×10-5 RIU and a sensor sensitivity of 5.39 RIU-1 have been achieved by the platform. In the biochemical detection experiments, OVA was used to functionalize the gold nanoparticle in order to detect anti-OVA. Results show that the calibration curve is linear (R2>0.99) and the limit of detection (LOD) is about 4.64×10-6 g/mL (3.09×10-8 M).
In the second part:the RFO-PPR platform has achieved the absorbance sensitivity of 4.83 AU/RIU-1 and the sensor resolution of 4.6×10-5 RIU by using gold nanospheres as the sensing element. By the similar configuration, but using gold nanorods as the sensing element, the absorbance sensitivity of 3.81 AU/RIU-1 and the sensor resolution of 3.7×10-5 RIU have been achieved. In the biochemical detection experiments, DNP was used to functionalize the gold nanorods in order to detect anti-DNP antibody. Results show that the calibration curve is linear (correlation coefficient >0.99) and the detection limit is less than 3.88×10-10 M.

目錄
中文摘要 I
英文摘要 III
目錄 V
表目錄 XIII
第一章 緒論 1
1.1 生物感測器(Biosensor) 1
1.1.1 生物感測器1 1
1.1.2 生物感測器市場發展概況 2
1.2 貴金屬奈米粒子電漿共振 4
1.2.1 粒子電漿共振(Particle Plasmon Resonance, PPR)3 4
1.2.2 貴金屬奈米粒子的光譜性質 5
1.3 免標記式光波導粒子電漿共振生物感測平台 8
1.3.1 光波導原理 8
1.3.2 漸逝場(Evanescent field)10 9
1.4 自組裝單層膜(self-assembled monolayers, SAMs) 10
1.4.1 MPTMS 12
1.4.2 MPS 13
1.5 研究動機與目的 14
1.6 反射式光波導粒子電漿共振生物感測器 16
第二章 實驗部分 18
2.1 化學藥品 18
2.2 生化藥品 21
2.3 實驗用儀器和實驗平台 22
2.3.1 實驗用儀器 22
2.3.2 實驗平台 24
2.4 光波導基材製備及清洗 26
2.4.1 光波導基材的製備 26
2.4.2 光波導基材的清洗 29
2.5 貴金屬奈米粒子的合成 31
2.5.1 球型金奈米的合成7 31
2.5.2 棒狀金奈米的合成21 32
2.6 貴金屬奈米粒子的自組裝固定化 34
2.6.1 球型金奈米於光波導基材上的自組裝固定化流程 34
2.6.2 棒狀金奈米於光波導基材上的自組裝固定化流程 36
2.7 銀鏡反射塗層 38
2.8 反射塗層之保護 41
2.9 感測晶片封裝 43
2.10 生化衍生化 44
2.10.1 於固定化球型金奈米表面修飾OVA之方法 44
2.10.2 於固定化棒狀金奈米表面修飾DNP之方法 46
2.11 反射式管狀波導粒子電漿共振生物感測平台 47
2.12 反射式光纖粒子電漿共振生物感測平台 50
第三章 實驗結果與討論 53
3.1 反射式管狀波導粒子電漿共振感測平台 53
3.1.1 球型金奈米的合成與鑑定 53
3.1.2 球型金奈米的固定化 56
3.1.3 平台感測靈敏度測試 58
3.1.4 殘留量測試 63
3.1.5 生化樣品檢測能力 64
3.1.6 反射式管狀波導感測平台與光纖光波導感測平台比較 69
3.2反射式光纖粒子電漿共振感測平台-球型金奈米 70
3.2.1. 球型金奈米的合成與鑑定 70
3.2.2 球型金奈米固定化於光纖波導基材 70
3.2.3 感測靈敏度測試 72
3.3 反射式光纖粒子電漿共振感測平台-棒狀金奈米 75
3.3.1 棒狀金奈米的合成與鑑定 75
3.3.2棒狀金奈米之離心預處理 77
3.3.3 棒狀金奈米固定化於光波導基材 79
3.3.4 棒狀金奈米固定化於玻璃片 79
3.3.5 棒狀金奈米固定化於光纖 81
3.3.6 感測靈敏度測試 83
3.3.7 生化樣品檢測能力 86
3.3.8 全血樣品檢測 89
第四章 結論 92
參考文獻 94


參考文獻
1.Long, F.; Zhu, A.; Shi, H., Recent advances in optical biosensors for environmental monitoring and early warning. Sensors 2013, 13 (10), 13928-13948.
2.鄭珮綺 全球生物感測市場發展概況; IEK 產業情報網, 2013.
3.Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. The Journal of Physical Chemistry B 2003, 107 (3), 668-677.
4.Willets, K. A.; Van Duyne, R. P., Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
5.Sepúlveda, B.; Angelomé, P. C.; Lechuga, L. M.; Liz-Marzán, L. M., LSPR-based nanobiosensors. Nano Today 2009, 4 (3), 244-251.
6.(a) Link, S.; El-Sayed, M. A., Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. The Journal of Physical Chemistry B 1999, 103 (21), 4212-4217; (b) Frens, G., Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 1973, 241 (105), 20-22.
7.Turkevich, J.; Stevenson, P. C.; Hillier, J., A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society 1951, 11, 55-75.
8.Li, J.; Guo, H.; Li, Z.-Y., Microscopic and macroscopic manipulation of gold nanorod and its hybrid nanostructures [Invited]. Photonics Research 2013, 1 (1), 28-41.
9.Nath, N.; Chilkoti, A., Label-free biosensing by surface plasmon resonance of nanoparticles on glass: optimization of nanoparticle size. Analytical Chemistry 2004, 76 (18), 5370-5378.
10.Toomre, D.; Manstein, D. J., Lighting up the cell surface with evanescent wave microscopy. Trends in cell biology 2001, 11 (7), 298-303.
11.America, O. http://www.olympusmicro.com/primer/techniques/fluorescence/tirf/tirfintro.html.
12.Shiomi, T.; Matsui, M.; Mizukami, F.; Sakaguchi, K., A method for the molecular imprinting of hemoglobin on silica surfaces using silanes. Biomaterials 2005, 26 (27), 5564-5571.
13.Wang, H.; Chen, S.; Li, L.; Jiang, S., Improved method for the preparation of carboxylic acid and amine terminated self-assembled monolayers of alkanethiolates. Langmuir 2005, 21 (7), 2633-2636.
14.Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M., Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chemical reviews 2005, 105 (4), 1103-1170.
15.Pallavicini, P.; Dacarro, G.; Galli, M.; Patrini, M., Spectroscopic evaluation of surface functionalization efficiency in the preparation of mercaptopropyltrimethoxysilane self-assembled monolayers on glass. Journal of colloid and interface science 2009, 332 (2), 432-438.
16.Chen, W.-H.; Tseng, Y.-T.; Hsieh, S.; Liu, W.-C.; Hsieh, C.-W.; Wu, C.-W.; Huang, C.-H.; Lin, H.-Y.; Chen, C.-W.; Lin, P.-Y., Silanization of solid surfaces via mercaptopropylsilatrane: a new approach of constructing gold colloid monolayers. RSC Advances 2014, 4 (87), 46527-46535.
17.黃昱中, 反射式管狀波導粒子電漿共振生物感測平台之開發. 國立中正大學化學暨生物化學研究所碩士論文 2014.
18.Cheng, S.-F.; Chau, L.-K., Colloidal gold-modified optical fiber for chemical and biochemical sensing. Analytical Chemistry 2003, 75 (1), 16-21.
19.Chau, L.-K.; Lin, Y.-F.; Cheng, S.-F.; Lin, T.-J., Fiber-optic chemical and biochemical probes based on localized surface plasmon resonance. Sensors and Actuators B: Chemical 2006, 113 (1), 100-105.
20.Chen, C.-D.; Cheng, S.-F.; Chau, L.-K.; Wang, C. C., Sensing capability of the localized surface plasmon resonance of gold nanorods. Biosensors and Bioelectronics 2007, 22 (6), 926-932.
21.Lin, H.-Y.; Huang, C.-H.; Lu, S.-H.; Kuo, I.-T.; Chau, L.-K., Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosensors and Bioelectronics 2014, 51, 371-378.
22.Ye, X.; Zheng, C.; Chen, J.; Gao, Y.; Murray, C. B., Using binary surfactant mixtures to simultaneously improve the dimensional tunability and monodispersity in the seeded growth of gold nanorods. Nano letters 2013, 13 (2), 765-771.
23.(a) Siggia, S.; Segal, E., Determination of Aldehydes in Presence of Acids, Ketones, Acetals, and Vinyl Ethers. Analytical Chemistry 1953, 25 (4), 640-642; (b) Lau, O.-W.; Shao, B., Determination of glucose using a piezoelectric quartz crystal and the silver mirror reaction. Analytica chimica acta 2000, 407 (1), 17-21; (c) Ennis, J. L.; Shanley, E. S., On hazardous silver compounds. J. Chem. Educ 1991, 68 (1), A6.
24.Collins, P.; Holloway, K., A reappraisal of silver fulminate as a detonant. Propellants, Explosives, Pyrotechnics 1978, 3 (6), 159-162.
25.Uchida, K.; Otsuka, H.; Kaneko, M.; Kataoka, K.; Nagasaki, Y., A reactive poly (ethylene glycol) layer to achieve specific surface plasmon resonance sensing with a high S/N ratio: the substantial role of a short underbrushed PEG layer in minimizing nonspecific adsorption. Analytical chemistry 2005, 77 (4), 1075-1080.
26.Tarnawski, R.; Ulbricht, M., Amphiphilic gold nanoparticles: Synthesis, characterization and adsorption to PEGylated polymer surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2011, 374 (1), 13-21.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊