|
[1]Epstein, S. (2003). Weaning from ventilatory support. In J. Crapo, Glassroth, J, Karlinsky, J, King, TE (Ed.), Textbook of Pulmonary Diseases (7 ed., pp. 1089): Philadelphia : Lippincott Williams & Wilkins. [2]Tobin, M. J. (2006). Complications in ventilator supported patients. In S. K. Epstein (Ed.), Principles and practice of mechanical ventilation (pp. 877-902): McGraw-Hill. [3]Pilbeam, S. P. (2006). Effects of positive pressure ventilation on the pulmonary system. In J. M. C. S.P. Pilbeam (Ed.), Mechanical Ventilation Physiologycal and Clinical Applications (pp. 357-390). [4]MacIntyre, N. R. (2001). Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest, 120(90060), 375S-396S. [5]Seymour, C. W., Martinez, A., Christie, J. D., & Fuchs, B. D. (2004). The outcome of extubation failure in a community hospital intensive care unit: a cohort study. Crit Care, 8(5), R322-R327. [6]Boles, J. M., Bion, J., Connors, A., Herridge, M., Marsh, B., Melot, C., et al. (2007). Weaning from mechanical ventilation. Eur. Respir. J., 29(5), 1033-1056. [7]Girard, T. D., & Ely, E. W. (2008). Protocol-driven ventilator weaning: reviewing the evidence. Clin. Chest Med., 29(2), 241-252. [8]Conti, G., Montini, L., Pennisi, M. A., Cavaliere, F., Arcangeli, A., Bocci, M. G., et al. (2004). A prospective, blinded evaluation of indexes proposed to predict weaning from mechanical ventilation. Intensive Care Med, 30(5), 830-836. [9]Girard, T. D., Kress, J. P., Fuchs, B. D., Thomason, J. W., Schweickert, W. D., Pun, B. T., et al. (2008). Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet, 371(9607), 126-134. [10]Hubmayr, R. D., Loosbrock, L. M., Gillespie, D. J., & Rodarte, J. R. (1988). Oxygen uptake during weaning from mechanical ventilation. Chest, 94(6), 1148-1155. [11]Hurtado, F. J., Beron, M., Olivera, W., Garrido, R., Silva, J., Caragna, E., et al. (2001). Gastric intramucosal pH and intraluminal PCO2 during weaning from mechanical ventilation. Crit Care Med, 29(1), 70-76. [12]Krieger, B. P., Ershowsky, P. F., Becker, D. A., & Gazeroglu, H. B. (1989). Evaluation of conventional criteria for predicting successful weaning from mechanical ventilatory support in elderly patients. Crit Care Med, 17(9), 858-861. [13]Meade, M. (2001). Predicting success in weaning from mechanical ventilation. Chest, 120(90060), 400S-424S. [14]Nemer, S. N., Barbas, C. S. V., Caldeira, J. B., Guimaraes, B., Azeredo, L. M., Gago, R., et al. (2009). Evaluation of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the weaning outcome. J. Crit. Care, 24(3), 441-446. [15]Yang, K. L., & Tobin, M. J. (1991). A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med, 324(21), 1445-1450. [16]Frutos-Vivar, F., Ferguson, N. D., Esteban, A., Epstein, S. K., Arabi, Y., Apezteguia, C., et al. (2006). Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest, 130(6), 1664-1671. [17]Epstein, S. K. (2009). Weaning from ventilatory support. Curr Opin Crit Care, 15(1), 36-43. [18]Nemer, S. N., Barbas, C. S. V., Caldeira, J. B., Carias, T. C., Santos, R. G., Almeida, L. C., et al. (2009). A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care, 13(5), R152. [19]Jabour, E. R., Rabil, D. M., Truwit, J. D., & Rochester, D. F. (1991). Evaluation of a new weaning index based on ventilatory endurance and the efficiency of gas exchange. Am Rev Respir Dis, 144(3 Pt 1), 531-537. [20]Krieger, B. P., Isber, J., Breitenbucher, A., Throop, G., & Ershowsky, P. (1997). Serial measurements of the rapid-shallow-breathing index as a predictor of weaning outcome in elderly medical patients. Chest, 112(4), 1029-1034. [21]El-Khatib, M. F., Jamaleddine, G. W., Khoury, A. R., & Obeid, M. Y. (2002). Effect of continuous positive airway pressure on the rapid shallow breathing index in patients following cardiac surgery. Chest, 121(2), 475-479. [22]El-Khatib, M. F., Zeineldine, S. M., & Jamaleddine, G. W. (2008). Effect of pressure support ventilation and positive end expiratory pressure on the rapid shallow breathing index in intensive care unit patients. Intensive Care Med, 34(3), 505-510. [23]Cook, D., Meade, M., Guyatt, G., Griffith, L., & Booker, L. (2000). Criteria for weaning from mechanical ventilation. Evid Rep Technol Assess (Summ)(23), 1-4. [24]Tobin, M. J., & Jubran, A. (2006). Variable performance of weaning-predictor tests: role of Bayes'' theorem and spectrum and test-referral bias. Intensive Care Med, 32(12), 2002-2012. [25]Lisboa, P. J. (2002). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw, 15(1), 11-39. [26]Gottschalk, A., Hyzer, M. C., & Geer, R. T. (2000). A comparison of human and machine-based predictions of successful weaning from mechanical ventilation. Med. Decis. Making, 20(2), 160-169. [27]Jiin-Chyr Hsu, Y.-F. C., Hsuan-Hung Lin, Chi-Hsiang Li, Xiaoyi Jiang. (2007). Construction of prediction module for successful ventilator weaning. Lecture Notes in Computer Science, 4570, 766-775. [28]Yu, H.-H. (2006). Using artificial neural network to predict the successful rate of weaning from mechanical ventilation. TZU CHI University. [29]Esteban, A., Anzueto, A., Alia, I., Gordo, F., Apezteguia, C., Palizas, F., et al. (2000). How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med, 161(5), 1450-1458. [30]El-Khatib, M. F., & Bou-Khalil, P. (2008). Clinical review: liberation from mechanical ventilation. Crit Care, 12(4), 221. [31]Kuo, P. H., Wu, H. D., Lu, B. Y., Chen, M. T., Kuo, S. H., & Yang, P. C. (2006). Predictive value of rapid shallow breathing index measured at initiation and termination of a 2-hour spontaneous breathing trial for weaning outcome in ICU patients. J. Formos. Med. Assoc., 105(5), 390-398. [32]Ely EW, B. A., Evans GW, Haponik EF. (1999). The prognostic significance of passing a daily screen of weaning parameters. Intensive Care Med, 25(6), 581-587. [33]MacIntyre, N. (2008). Ventilator discontinuation process: evidence and guidelines. Crit Care Med, 36(1), 329-330. [34]Koch, R. L. (2007). Therapist driven protocols: a look back and moving into the future. Crit. Care Clin., 23(2), 149-159. [35]Esteban, A., Alia, I., Tobin, M. J., Gil, A., Gordo, F., Vallverdu, I., et al. (1999). Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am. J. Respir. Crit. Care Med., 159(2), 512-518. [36]Whitelaw, W. A., & Derenne, J. P. (1993). Airway occlusion pressure. J. Appl. Physiol., 74(4), 1475-1483. [37]Sassoon, C. S., Te, T. T., Mahutte, C. K., & Light, R. W. (1987). Airway occlusion pressure. An important indicator for successful weaning in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis, 135(1), 107-113. [38]Sassoon, C. S., & Mahutte, C. K. (1993). Airway occlusion pressure and breathing pattern as predictors of weaning outcome. Am Rev Respir Dis, 148(4 Pt 1), 860-866. [39]Alvisi, R., Volta, C. A., Righini, E. R., Capuzzo, M., Ragazzi, R., Verri, M., et al. (2000). Predictors of weaning outcome in chronic obstructive pulmonary disease patients. Eur. Respir. J., 15(4), 656-662. [40]Boutou, A. K., Abatzidou, F., Tryfon, S., Nakou, C., Pitsiou, G., Argyropoulou, P., et al. (2011). Diagnostic accuracy of the rapid shallow breathing index to predict a successful spontaneous breathing trial outcome in mechanically ventilated patients with chronic obstructive pulmonary disease. Heart Lung, 40(2), 105-110. [41]Chao, D. C., & Scheinhorn, D. J. (2007). Determining the best threshold of rapid shallow breathing index in a therapist-implemented patient-specific weaning protocol. Respir. Care, 52(2), 159-165. [42]Cohen, J. D., Shapiro, M., Grozovski, E., Lev, S., Fisher, H., & Singer, P. (2006). Extubation outcome following a spontaneous breathing trial with automatic tube compensation versus continuous positive airway pressure. Crit Care Med, 34(3), 682-686. [43]Epstein, S. K., & Ciubotaru, R. L. (1996). Influence of gender and endotracheal tube size on preextubation breathing pattern. Am. J. Respir. Crit. Care Med., 154(6 Pt 1), 1647-1652. [44]Patel, K. N., Ganatra, K. D., Bates, J. H., & Young, M. P. (2009). Variation in the rapid shallow breathing index associated with common measurement techniques and conditions. Respir. Care, 54(11), 1462-1466. [45]Mokhlesi, B., Tulaimat, A., Gluckman, T. J., Wang, Y., Evans, A. T., & Corbridge, T. C. (2007). Predicting extubation failure after successful completion of a spontaneous breathing trial. Respir. Care, 52(12), 1710-1717. [46]Yamamura, S. (2003). Clinical application of artificial neural network (ANN) modeling to predict pharmacokinetic parameters of severely ill patients. Adv Drug Deliv Rev, 55(9), 1233-1251. [47]Almeida, J. S. (2002). Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol., 13(1), 72-76. [48]Miller, A. S., Blott, B. H., & Hames, T. K. (1992). Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput., 30(5), 449-464. [49]Fausett, L. (1994). Fundamentals neural networks: architectures, algorithms and applications: Prentice Hall International. [50]David E. Rumelhart, J. L. M., PDP Research Group. (1986). Parallel distributed processing: explorations in the microstructure of cognition: foundations (Vol. 1): MIT Press. [51]Baxt, W. G. (1995). Application of artificial neural networks to clinical medicine. Lancet, 346(8983), 1135-1138. [52]Hsieh, C. H., Lu, R. H., Lee, N. H., Chiu, W. T., Hsu, M. H., & Li, Y. C. (2011). Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery, 149(1), 87-93. [53]Li, Y. C., Liu, L., Chiu, W. T., & Jian, W. S. (2000). Neural network modeling for surgical decisions on traumatic brain injury patients. Int. J. Med. Inf., 57(1), 1-9. [54]Lin, C. C., Wang, Y. C., Chen, J. Y., Liou, Y. J., Bai, Y. M., Lai, I. C., et al. (2008). Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data. Comput. Methods Programs Biomed., 91(2), 91-99. [55]Lin, C. S., Chiu, J. S., Hsieh, M. H., Mok, M. S., Li, Y. C., & Chiu, H. W. (2008). Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks. Comput. Methods Programs Biomed., 92(2), 193-197. [56]Santelices, L. C., Wang, Y., Severyn, D., Druzdzel, M. J., Kormos, R. L., & Antaki, J. F. (2010). Development of a hybrid decision support model for optimal ventricular assist device weaning. Ann Thorac Surg, 90(3), 713-720. [57]Cohen, J. D. (2002). Automatic tube compensation-assisted respiratory rate to tidal volume ratio improves the prediction of weaning outcome. Chest, 122(3), 980-984. [58]Giraldo, B., Garde, A., Arizmendi, C., Jane, R., Benito, S., Diaz, I., et al. (2006). Support vector machine classification applied on weaning trials patients. Conf Proc IEEE Eng Med Biol Soc, 1, 5587-5590. [59]Casaseca-de-la-Higuera, P., Martin-Fernandez, M., & Alberola-Lopez, C. (2006). Weaning from mechanical ventilation: a retrospective analysis leading to a multimodal perspective. IEEE Trans. Biomed. Eng., 53(7), 1330-1345. [60]Salam, A., Smina, M., Gada, P., Tilluckdharry, L., Upadya, A., Amoateng-Adjepong, Y., et al. (2003). The effect of arterial blood gas values on extubation decisions. Respir. Care, 48(11), 1033-1037. [61]Pawson, S. R., & DePriest, J. L. (2004). Are blood gases necessary in mechanically ventilated patients who have successfully completed a spontaneous breathing trial? Respir. Care, 49(11), 1316-1319. [62]Bien, M. Y., Shui Lin, Y., Shih, C. H., Yang, Y. L., Lin, H. W., Bai, K. J., et al. (2011). Comparisons of predictive performance of breathing pattern variability measured during T-piece, automatic tube compensation, and pressure support ventilation for weaning intensive care unit patients from mechanical ventilation. Crit Care Med, 39(10), 2253-2262. [63]Yang, K. L., & Tobin, M. J. (1991). Measurement of minute ventilation in ventilator-dependent patients: need for standardization. Crit Care Med, 19(1), 49-53. [64]Vitacca, M., Paneroni, M., Bianchi, L., Clini, E., Vianello, A., Ceriana, P., et al. (2006). Maximal inspiratory and expiratory pressure measurement in tracheotomised patients. Eur. Respir. J., 27(2), 343-349. [65]Tanios, M. A., Nevins, M. L., Hendra, K. P., Cardinal, P., Allan, J. E., Naumova, E. N., et al. (2006). A randomized, controlled trial of the role of weaning predictors in clinical decision making. Crit Care Med, 34(10), 2530-2535. [66]Arizmendi, C., Romero, E., Alquezar, R., Caminal, P., Diaz, I., Benito, S., et al. (2009). Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks. Conf Proc IEEE Eng Med Biol Soc, 2009, 4343-4346. [67]Kline, M., & Berardi, L. (2005). Revisiting squared-error and cross-entropy functions for training neural network classifiers. Neural Comput. Appl., 14(4), 310-318. [68]Ezingeard, E., Diconne, E., Guyomarc''h, S., Venet, C., Page, D., Gery, P., et al. (2006). Weaning from mechanical ventilation with pressure support in patients failing a T-tube trial of spontaneous breathing. Intensive Care Medicine, 32(1), 165-169. [69]Pilbeam, S. P. (2006). Discontinuation of and weaning from mechanical ventilation. In S. P. Pilbeam (Ed.), Mechanical Ventilation: Physiological and Clinical Applications (4 ed., pp. 443-471): Mosby. [70]Giraldo, B. F., Chaparro, J., Ballesteros, D., Lopez-Rodriguez, L., Geat, D., Benito, S., et al. (2004). Study of the respiratory pattern variability in patients during weaning trials. Conf Proc IEEE Eng Med Biol Soc, 6, 3909-3912. [71]Tobin, M. J., Laghi, F., & Jubran, A. (2010). Narrative review: ventilator-induced respiratory muscle weakness. Ann. Intern. Med., 153(4), 240-245. [72]Unoki, T., Serita, A., & Grap, M. J. (2008). Automatic tube compensation during weaning from mechanical ventilation: evidence and clinical implications. Crit. Care Nurse, 28(4), 34-42; quiz 43. [73]Fabry, B., Haberthur, C., Zappe, D., Guttmann, J., Kuhlen, R., & Stocker, R. (1997). Breathing pattern and additional work of breathing in spontaneously breathing patients with different ventilatory demands during inspiratory pressure support and automatic tube compensation. Intensive Care Medicine, 23(5), 545-552. [74]Cohen, J., Shapiro, M., Grozovski, E., Fox, B., Lev, S., & Singer, P. (2009). Prediction of extubation outcome: a randomised, controlled trial with automatic tube compensation vs. pressure support ventilation. Critical Care, 13(1), R21. [75]Straus, C., Louis, B., Isabey, D., Lemaire, F., Harf, A., & Brochard, L. (1998). Contribution of the endotracheal tube and the upper airway to breathing workload. Am. J. Respir. Crit. Care Med., 157(1), 23-30. [76]Koksal, G. M., Sayilgan, C., Sen, O., & Oz, H. (2004). The effects of different weaning modes on the endocrine stress response. Critical Care, 8(1), R31-34. [77]Esteban, A., Alia, I., Gordo, F., Fernandez, R., Solsona, J. F., Vallverdu, I., et al. (1997). Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am. J. Respir. Crit. Care Med., 156(2 Pt 1), 459-465. [78]Epstein, S. K. (2002). Extubation. Respir. Care, 47(4), 483-492. [79]Tanios, M. A., & Epstein, S. K. (2010). Spontaneous breathing trials: should we use automatic tube compensation? Respir. Care, 55(5), 640-642. [80]Mueller, M., Wagner, C. L., Annibale, D. J., Hulsey, T. C., Knapp, R. G., & Almeida, J. S. (2004). Predicting extubation outcome in preterm newborns: a comparison of neural networks with clinical expertise and statistical modeling. Pediatr. Res., 56(1), 11-18.
|