跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭宏如
研究生(外文):Hung-Ju Kuo
論文名稱:應用類神經網路提升內科加護病患脫離呼吸器的預測能力
論文名稱(外文):The prediction of ventilator weaning outcome improved by artificial neural network in medical intensive care unit
指導教授:邱泓文邱泓文引用關係
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學資訊研究所
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:67
中文關鍵詞:呼吸器脫離醫學資訊類神經網路
外文關鍵詞:Ventilator weaningMedical informaticsArtificial neural network
相關次數:
  • 被引用被引用:2
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
審定書 ii
碩士論文電子檔案上網授權書 iii
臺北醫學大學電子暨紙本學位論文書目同意公開申請書 iv
臺北醫學大學學位考試保密同意簽到表 v
誌 謝 vi
目錄 viii
表目錄 x
圖目錄 xi
論 文 摘 要 xii
Abstract xiv
第一章 緒論 1
第二章 文獻探討 3
2.1 呼吸器脫離程序 3
2.2 呼吸器脫離的評估 5
2.3 呼吸器脫離指標(weaning indices) 7
2.4 類神經網路 10
2.4.1 類神經網路的原理 10
2.4.2 類神經網路於臨床上的運用 13
2.5 影響呼吸器脫離的相關因子 15
第三章 研究材料與方法 19
3.1 實驗設計 19
3.1.1 預測模型建立的收案流程 19
3.1.2 特徵選擇(feature selection) 22
3.1.3 類神經網路架構 23
3.1.4 前瞻性驗證的收案流程 25
3.2 統計方法 28
第四章 結果 29
4.1 以回顧性收案病患資料建立類神經網路預測模型 29
4.1.1 回顧性收案病患分析 29
4.1.2 利用5倍交叉驗證尋找最佳隱藏層神經元個數 32
4.2 以前瞻性收案病患資料測試類神經網路模型 34
4.2.1 前瞻性收案病患分析 34
4.2.2 以前瞻性個案驗證類神經網路預測模型 36
4.3 匯集前瞻性與回顧性個案資料後的類神經網路模組再驗證 37
4.3.1 分析建立的預測模型其預測能力不良的原因 37
4.3.2 匯集兩階段收案病患的資料分析 41
4.3.3 匯集兩階段收案病患的資料集後進行類神經網路模組的再驗證 43
第五章 討論與結論 47
5.1 討論 47
5.1.1 研究病患族群分析 47
5.1.2 分析前瞻性驗證結果不佳的原因 48
5.1.3 以壓力支持型通氣模式作為自發性呼吸測試的原因 50
5.1.4 與過去相關研究之比較 52
5.2 研究限制 53
5.3 結論與未來展望 54
參考資料 55
附錄
附錄1:第一組5倍交叉驗證測驗組與訓練組各項類神經網路輸入參數比較 63
附錄2:第二組5倍交叉驗證測驗組與訓練組各項類神經網路輸入參數比較 64
附錄3:第三組5倍交叉驗證測驗組與訓練組各項類神經網路輸入參數比較 65
附錄4:第四組5倍交叉驗證測驗組與訓練組各項類神經網路輸入參數比較 66
附錄5:第五組5倍交叉驗證測驗組與訓練組各項類神經網路輸入參數比較 67


[1]Epstein, S. (2003). Weaning from ventilatory support. In J. Crapo, Glassroth, J, Karlinsky, J, King, TE (Ed.), Textbook of Pulmonary Diseases (7 ed., pp. 1089): Philadelphia : Lippincott Williams & Wilkins.
[2]Tobin, M. J. (2006). Complications in ventilator supported patients. In S. K. Epstein (Ed.), Principles and practice of mechanical ventilation (pp. 877-902): McGraw-Hill.
[3]Pilbeam, S. P. (2006). Effects of positive pressure ventilation on the pulmonary system. In J. M. C. S.P. Pilbeam (Ed.), Mechanical Ventilation Physiologycal and Clinical Applications (pp. 357-390).
[4]MacIntyre, N. R. (2001). Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest, 120(90060), 375S-396S.
[5]Seymour, C. W., Martinez, A., Christie, J. D., & Fuchs, B. D. (2004). The outcome of extubation failure in a community hospital intensive care unit: a cohort study. Crit Care, 8(5), R322-R327.
[6]Boles, J. M., Bion, J., Connors, A., Herridge, M., Marsh, B., Melot, C., et al. (2007). Weaning from mechanical ventilation. Eur. Respir. J., 29(5), 1033-1056.
[7]Girard, T. D., & Ely, E. W. (2008). Protocol-driven ventilator weaning: reviewing the evidence. Clin. Chest Med., 29(2), 241-252.
[8]Conti, G., Montini, L., Pennisi, M. A., Cavaliere, F., Arcangeli, A., Bocci, M. G., et al. (2004). A prospective, blinded evaluation of indexes proposed to predict weaning from mechanical ventilation. Intensive Care Med, 30(5), 830-836.
[9]Girard, T. D., Kress, J. P., Fuchs, B. D., Thomason, J. W., Schweickert, W. D., Pun, B. T., et al. (2008). Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet, 371(9607), 126-134.
[10]Hubmayr, R. D., Loosbrock, L. M., Gillespie, D. J., & Rodarte, J. R. (1988). Oxygen uptake during weaning from mechanical ventilation. Chest, 94(6), 1148-1155.
[11]Hurtado, F. J., Beron, M., Olivera, W., Garrido, R., Silva, J., Caragna, E., et al. (2001). Gastric intramucosal pH and intraluminal PCO2 during weaning from mechanical ventilation. Crit Care Med, 29(1), 70-76.
[12]Krieger, B. P., Ershowsky, P. F., Becker, D. A., & Gazeroglu, H. B. (1989). Evaluation of conventional criteria for predicting successful weaning from mechanical ventilatory support in elderly patients. Crit Care Med, 17(9), 858-861.
[13]Meade, M. (2001). Predicting success in weaning from mechanical ventilation. Chest, 120(90060), 400S-424S.
[14]Nemer, S. N., Barbas, C. S. V., Caldeira, J. B., Guimaraes, B., Azeredo, L. M., Gago, R., et al. (2009). Evaluation of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the weaning outcome. J. Crit. Care, 24(3), 441-446.
[15]Yang, K. L., & Tobin, M. J. (1991). A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med, 324(21), 1445-1450.
[16]Frutos-Vivar, F., Ferguson, N. D., Esteban, A., Epstein, S. K., Arabi, Y., Apezteguia, C., et al. (2006). Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest, 130(6), 1664-1671.
[17]Epstein, S. K. (2009). Weaning from ventilatory support. Curr Opin Crit Care, 15(1), 36-43.
[18]Nemer, S. N., Barbas, C. S. V., Caldeira, J. B., Carias, T. C., Santos, R. G., Almeida, L. C., et al. (2009). A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care, 13(5), R152.
[19]Jabour, E. R., Rabil, D. M., Truwit, J. D., & Rochester, D. F. (1991). Evaluation of a new weaning index based on ventilatory endurance and the efficiency of gas exchange. Am Rev Respir Dis, 144(3 Pt 1), 531-537.
[20]Krieger, B. P., Isber, J., Breitenbucher, A., Throop, G., & Ershowsky, P. (1997). Serial measurements of the rapid-shallow-breathing index as a predictor of weaning outcome in elderly medical patients. Chest, 112(4), 1029-1034.
[21]El-Khatib, M. F., Jamaleddine, G. W., Khoury, A. R., & Obeid, M. Y. (2002). Effect of continuous positive airway pressure on the rapid shallow breathing index in patients following cardiac surgery. Chest, 121(2), 475-479.
[22]El-Khatib, M. F., Zeineldine, S. M., & Jamaleddine, G. W. (2008). Effect of pressure support ventilation and positive end expiratory pressure on the rapid shallow breathing index in intensive care unit patients. Intensive Care Med, 34(3), 505-510.
[23]Cook, D., Meade, M., Guyatt, G., Griffith, L., & Booker, L. (2000). Criteria for weaning from mechanical ventilation. Evid Rep Technol Assess (Summ)(23), 1-4.
[24]Tobin, M. J., & Jubran, A. (2006). Variable performance of weaning-predictor tests: role of Bayes'' theorem and spectrum and test-referral bias. Intensive Care Med, 32(12), 2002-2012.
[25]Lisboa, P. J. (2002). A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Netw, 15(1), 11-39.
[26]Gottschalk, A., Hyzer, M. C., & Geer, R. T. (2000). A comparison of human and machine-based predictions of successful weaning from mechanical ventilation. Med. Decis. Making, 20(2), 160-169.
[27]Jiin-Chyr Hsu, Y.-F. C., Hsuan-Hung Lin, Chi-Hsiang Li, Xiaoyi Jiang. (2007). Construction of prediction module for successful ventilator weaning. Lecture Notes in Computer Science, 4570, 766-775.
[28]Yu, H.-H. (2006). Using artificial neural network to predict the successful rate of weaning from mechanical ventilation. TZU CHI University.
[29]Esteban, A., Anzueto, A., Alia, I., Gordo, F., Apezteguia, C., Palizas, F., et al. (2000). How is mechanical ventilation employed in the intensive care unit? An international utilization review. Am J Respir Crit Care Med, 161(5), 1450-1458.
[30]El-Khatib, M. F., & Bou-Khalil, P. (2008). Clinical review: liberation from mechanical ventilation. Crit Care, 12(4), 221.
[31]Kuo, P. H., Wu, H. D., Lu, B. Y., Chen, M. T., Kuo, S. H., & Yang, P. C. (2006). Predictive value of rapid shallow breathing index measured at initiation and termination of a 2-hour spontaneous breathing trial for weaning outcome in ICU patients. J. Formos. Med. Assoc., 105(5), 390-398.
[32]Ely EW, B. A., Evans GW, Haponik EF. (1999). The prognostic significance of passing a daily screen of weaning parameters. Intensive Care Med, 25(6), 581-587.
[33]MacIntyre, N. (2008). Ventilator discontinuation process: evidence and guidelines. Crit Care Med, 36(1), 329-330.
[34]Koch, R. L. (2007). Therapist driven protocols: a look back and moving into the future. Crit. Care Clin., 23(2), 149-159.
[35]Esteban, A., Alia, I., Tobin, M. J., Gil, A., Gordo, F., Vallverdu, I., et al. (1999). Effect of spontaneous breathing trial duration on outcome of attempts to discontinue mechanical ventilation. Spanish Lung Failure Collaborative Group. Am. J. Respir. Crit. Care Med., 159(2), 512-518.
[36]Whitelaw, W. A., & Derenne, J. P. (1993). Airway occlusion pressure. J. Appl. Physiol., 74(4), 1475-1483.
[37]Sassoon, C. S., Te, T. T., Mahutte, C. K., & Light, R. W. (1987). Airway occlusion pressure. An important indicator for successful weaning in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis, 135(1), 107-113.
[38]Sassoon, C. S., & Mahutte, C. K. (1993). Airway occlusion pressure and breathing pattern as predictors of weaning outcome. Am Rev Respir Dis, 148(4 Pt 1), 860-866.
[39]Alvisi, R., Volta, C. A., Righini, E. R., Capuzzo, M., Ragazzi, R., Verri, M., et al. (2000). Predictors of weaning outcome in chronic obstructive pulmonary disease patients. Eur. Respir. J., 15(4), 656-662.
[40]Boutou, A. K., Abatzidou, F., Tryfon, S., Nakou, C., Pitsiou, G., Argyropoulou, P., et al. (2011). Diagnostic accuracy of the rapid shallow breathing index to predict a successful spontaneous breathing trial outcome in mechanically ventilated patients with chronic obstructive pulmonary disease. Heart Lung, 40(2), 105-110.
[41]Chao, D. C., & Scheinhorn, D. J. (2007). Determining the best threshold of rapid shallow breathing index in a therapist-implemented patient-specific weaning protocol. Respir. Care, 52(2), 159-165.
[42]Cohen, J. D., Shapiro, M., Grozovski, E., Lev, S., Fisher, H., & Singer, P. (2006). Extubation outcome following a spontaneous breathing trial with automatic tube compensation versus continuous positive airway pressure. Crit Care Med, 34(3), 682-686.
[43]Epstein, S. K., & Ciubotaru, R. L. (1996). Influence of gender and endotracheal tube size on preextubation breathing pattern. Am. J. Respir. Crit. Care Med., 154(6 Pt 1), 1647-1652.
[44]Patel, K. N., Ganatra, K. D., Bates, J. H., & Young, M. P. (2009). Variation in the rapid shallow breathing index associated with common measurement techniques and conditions. Respir. Care, 54(11), 1462-1466.
[45]Mokhlesi, B., Tulaimat, A., Gluckman, T. J., Wang, Y., Evans, A. T., & Corbridge, T. C. (2007). Predicting extubation failure after successful completion of a spontaneous breathing trial. Respir. Care, 52(12), 1710-1717.
[46]Yamamura, S. (2003). Clinical application of artificial neural network (ANN) modeling to predict pharmacokinetic parameters of severely ill patients. Adv Drug Deliv Rev, 55(9), 1233-1251.
[47]Almeida, J. S. (2002). Predictive non-linear modeling of complex data by artificial neural networks. Curr. Opin. Biotechnol., 13(1), 72-76.
[48]Miller, A. S., Blott, B. H., & Hames, T. K. (1992). Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput., 30(5), 449-464.
[49]Fausett, L. (1994). Fundamentals neural networks: architectures, algorithms and applications: Prentice Hall International.
[50]David E. Rumelhart, J. L. M., PDP Research Group. (1986). Parallel distributed processing: explorations in the microstructure of cognition: foundations (Vol. 1): MIT Press.
[51]Baxt, W. G. (1995). Application of artificial neural networks to clinical medicine. Lancet, 346(8983), 1135-1138.
[52]Hsieh, C. H., Lu, R. H., Lee, N. H., Chiu, W. T., Hsu, M. H., & Li, Y. C. (2011). Novel solutions for an old disease: diagnosis of acute appendicitis with random forest, support vector machines, and artificial neural networks. Surgery, 149(1), 87-93.
[53]Li, Y. C., Liu, L., Chiu, W. T., & Jian, W. S. (2000). Neural network modeling for surgical decisions on traumatic brain injury patients. Int. J. Med. Inf., 57(1), 1-9.
[54]Lin, C. C., Wang, Y. C., Chen, J. Y., Liou, Y. J., Bai, Y. M., Lai, I. C., et al. (2008). Artificial neural network prediction of clozapine response with combined pharmacogenetic and clinical data. Comput. Methods Programs Biomed., 91(2), 91-99.
[55]Lin, C. S., Chiu, J. S., Hsieh, M. H., Mok, M. S., Li, Y. C., & Chiu, H. W. (2008). Predicting hypotensive episodes during spinal anesthesia with the application of artificial neural networks. Comput. Methods Programs Biomed., 92(2), 193-197.
[56]Santelices, L. C., Wang, Y., Severyn, D., Druzdzel, M. J., Kormos, R. L., & Antaki, J. F. (2010). Development of a hybrid decision support model for optimal ventricular assist device weaning. Ann Thorac Surg, 90(3), 713-720.
[57]Cohen, J. D. (2002). Automatic tube compensation-assisted respiratory rate to tidal volume ratio improves the prediction of weaning outcome. Chest, 122(3), 980-984.
[58]Giraldo, B., Garde, A., Arizmendi, C., Jane, R., Benito, S., Diaz, I., et al. (2006). Support vector machine classification applied on weaning trials patients. Conf Proc IEEE Eng Med Biol Soc, 1, 5587-5590.
[59]Casaseca-de-la-Higuera, P., Martin-Fernandez, M., & Alberola-Lopez, C. (2006). Weaning from mechanical ventilation: a retrospective analysis leading to a multimodal perspective. IEEE Trans. Biomed. Eng., 53(7), 1330-1345.
[60]Salam, A., Smina, M., Gada, P., Tilluckdharry, L., Upadya, A., Amoateng-Adjepong, Y., et al. (2003). The effect of arterial blood gas values on extubation decisions. Respir. Care, 48(11), 1033-1037.
[61]Pawson, S. R., & DePriest, J. L. (2004). Are blood gases necessary in mechanically ventilated patients who have successfully completed a spontaneous breathing trial? Respir. Care, 49(11), 1316-1319.
[62]Bien, M. Y., Shui Lin, Y., Shih, C. H., Yang, Y. L., Lin, H. W., Bai, K. J., et al. (2011). Comparisons of predictive performance of breathing pattern variability measured during T-piece, automatic tube compensation, and pressure support ventilation for weaning intensive care unit patients from mechanical ventilation. Crit Care Med, 39(10), 2253-2262.
[63]Yang, K. L., & Tobin, M. J. (1991). Measurement of minute ventilation in ventilator-dependent patients: need for standardization. Crit Care Med, 19(1), 49-53.
[64]Vitacca, M., Paneroni, M., Bianchi, L., Clini, E., Vianello, A., Ceriana, P., et al. (2006). Maximal inspiratory and expiratory pressure measurement in tracheotomised patients. Eur. Respir. J., 27(2), 343-349.
[65]Tanios, M. A., Nevins, M. L., Hendra, K. P., Cardinal, P., Allan, J. E., Naumova, E. N., et al. (2006). A randomized, controlled trial of the role of weaning predictors in clinical decision making. Crit Care Med, 34(10), 2530-2535.
[66]Arizmendi, C., Romero, E., Alquezar, R., Caminal, P., Diaz, I., Benito, S., et al. (2009). Data mining of patients on weaning trials from mechanical ventilation using cluster analysis and neural networks. Conf Proc IEEE Eng Med Biol Soc, 2009, 4343-4346.
[67]Kline, M., & Berardi, L. (2005). Revisiting squared-error and cross-entropy functions for training neural network classifiers. Neural Comput. Appl., 14(4), 310-318.
[68]Ezingeard, E., Diconne, E., Guyomarc''h, S., Venet, C., Page, D., Gery, P., et al. (2006). Weaning from mechanical ventilation with pressure support in patients failing a T-tube trial of spontaneous breathing. Intensive Care Medicine, 32(1), 165-169.
[69]Pilbeam, S. P. (2006). Discontinuation of and weaning from mechanical ventilation. In S. P. Pilbeam (Ed.), Mechanical Ventilation: Physiological and Clinical Applications (4 ed., pp. 443-471): Mosby.
[70]Giraldo, B. F., Chaparro, J., Ballesteros, D., Lopez-Rodriguez, L., Geat, D., Benito, S., et al. (2004). Study of the respiratory pattern variability in patients during weaning trials. Conf Proc IEEE Eng Med Biol Soc, 6, 3909-3912.
[71]Tobin, M. J., Laghi, F., & Jubran, A. (2010). Narrative review: ventilator-induced respiratory muscle weakness. Ann. Intern. Med., 153(4), 240-245.
[72]Unoki, T., Serita, A., & Grap, M. J. (2008). Automatic tube compensation during weaning from mechanical ventilation: evidence and clinical implications. Crit. Care Nurse, 28(4), 34-42; quiz 43.
[73]Fabry, B., Haberthur, C., Zappe, D., Guttmann, J., Kuhlen, R., & Stocker, R. (1997). Breathing pattern and additional work of breathing in spontaneously breathing patients with different ventilatory demands during inspiratory pressure support and automatic tube compensation. Intensive Care Medicine, 23(5), 545-552.
[74]Cohen, J., Shapiro, M., Grozovski, E., Fox, B., Lev, S., & Singer, P. (2009). Prediction of extubation outcome: a randomised, controlled trial with automatic tube compensation vs. pressure support ventilation. Critical Care, 13(1), R21.
[75]Straus, C., Louis, B., Isabey, D., Lemaire, F., Harf, A., & Brochard, L. (1998). Contribution of the endotracheal tube and the upper airway to breathing workload. Am. J. Respir. Crit. Care Med., 157(1), 23-30.
[76]Koksal, G. M., Sayilgan, C., Sen, O., & Oz, H. (2004). The effects of different weaning modes on the endocrine stress response. Critical Care, 8(1), R31-34.
[77]Esteban, A., Alia, I., Gordo, F., Fernandez, R., Solsona, J. F., Vallverdu, I., et al. (1997). Extubation outcome after spontaneous breathing trials with T-tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group. Am. J. Respir. Crit. Care Med., 156(2 Pt 1), 459-465.
[78]Epstein, S. K. (2002). Extubation. Respir. Care, 47(4), 483-492.
[79]Tanios, M. A., & Epstein, S. K. (2010). Spontaneous breathing trials: should we use automatic tube compensation? Respir. Care, 55(5), 640-642.
[80]Mueller, M., Wagner, C. L., Annibale, D. J., Hulsey, T. C., Knapp, R. G., & Almeida, J. S. (2004). Predicting extubation outcome in preterm newborns: a comparison of neural networks with clinical expertise and statistical modeling. Pediatr. Res., 56(1), 11-18.



電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以症狀評估與控制為基礎之遠距癌症居家安寧療護系統
2. 生物電紡技術製備含PC12細胞之順向中空纖維薄膜及管內細胞生長行為評估
3. 菸鹼酸羥肟酸抑制酪胺酸酶及調控黑色素生成之機制探討
4. 小鼠類原生殖幹細胞之遷移研究:低氧壓力對類胰島素生長因子I受體和基質細胞衍生因子I/C-X-C趨化因子受體IV訊息傳遞作用之探討
5. 發炎細胞激素與多功能性轉錄因子OCT4對子宮內膜異位症形成之探討
6. simvastatin藥物誘導人類大腸癌細胞死亡的分子機轉探討
7. 出生前後的短期低鈣血症對海馬迴腦區中BDNF的表現以及學習與記憶活動的影響
8. 小兒專科醫師與非小兒專科醫師對兒童肺炎病患之醫療資源差異研究
9. 老人營養風險指標在長期照護機構的運用
10. 氯化汞誘發氧化壓力對人類神經瘤母細胞SH-SY5Y之影響
11. Part I: 統合分析比較再生膜導合併骨移植物引牙周再生對大臼齒二級牙根分岔治療效果之系統性回顧 Part II: 系統性回顧比較單純清創手術, 牙釉質基衍生物及再生膜導引手術對動物大臼齒三級牙根分岔之治療效果
12. 呼吸器脫離的預測-以資料探勘分析和呼吸器脫離參數比較
13. 利用靜磁場誘導內毒素耐受性以降低脂多醣引發之腦部傷害
14. 丙戊酸 (Valproic Acid)對於脊髓損傷大鼠之影響
15. 利用臨床數據預測冠狀動脈血管繞道手術術後心房顫動發生