跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 02:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張益瑋
研究生(外文):Yi-Wei Zhang
論文名稱:將高分子金屬複合物之薄膜應用於光學變焦驅動
論文名稱(外文):Focus Tunable Device Actuator based on Ionic Polymer Metal Composite
指導教授:蘇國棟
指導教授(外文):Guo-Dung Su
口試委員:蔡永傑黃鼎偉
口試日期:2015-07-23
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:74
中文關鍵詞:電制動高分子銀電極離子聚合物金屬複合材料制動器
外文關鍵詞:Electroactive polymerAg-IPMC actuatorionic solution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
離子聚合物金屬複合材料為一種電制動高分子,對電氣刺激有極高的響應,由於其具有驅動電壓低和體積小等優點而被作為制動器應用於許多光機電系統。當施予電壓時,離子聚合物金屬複合材料會因為內部離子遷移而被制動。在本文中我們發展了新製作的銀電極離子聚合物金屬複合材料。與傳統鉑電極離子聚合物金屬複合材料相比,表現電阻下降90%,而且反應速度提升兩倍,驅動電壓下降20%。本文中我們應用優化的銀電極離子聚合物金屬複合材料作為驅動器驅動微透鏡陣列。而我們所使用的微透鏡陣列僅0.1克重,曲率半徑0.26釐米,焦長577微米。同時我們利用三維列印機來製作焦率調變的模組以及彈簧穩定系統,並與離子聚合物金屬複合材料以及微透鏡陣列整合。我們也使用ANSYS Workbench模擬彈簧系統的效用,並成功的利用2.5伏特驅動離子聚合物金屬複合材料在1秒內將鏡頭組移動200微米,此外其共振頻率大約是500赫茲。

IPMC (Ionic Polymer Metallic Composite) is a kind of electroactive polymer (EAP) which can be used as an actuator due to its low driving voltage, light weight and small volume. In this paper, the Ag-IPMC with complex fabrication method can be further developed which enhance the performance of IPMC. Compared with traditional Pt-IPMC, the surface resistance of Ag-IPMC dropped 90%. Furthermore, optimized Ag-IPMC not only enhances the response speed by two times, but also decreased the driving voltage by 20%. We applied the optimized Ag-IPMC as the lens actuator for curvilinear microlens array. It weighs 0.1g and the radius of curvature of microlens is 0.26 mm with focal length of 577 μm. We used the 3D printer to make a module and spring stable system combined with Ag-IPMC and microlens array. We also used modeling software, ANSYS Workbench, to confirm the effect of spring system. Finally, we successfully drive the lens system in 200 μm stroke under 2.5V driving voltage within 0.7 second, and the resonant frequency is approximately 500 Hz.

CONTENTS
誌謝 I
摘要 III
ABSTRACT V
CONTENTS VII
LIST OF FIGURES IX
LIST OF TABLES XII
Chapter 1 Introduction 1
1.1 Electroactive polymers 1
1.2 Ionic polymer metallic composite 3
1.3 Lower resistance by silver 9
1.4 Microlens array 10
1.5 Focus tunable system 11
1.6 Design concept 13
Chapter 2 Module Design and Simulation Results 15
2.1 Focus tunable device module 15
2.2 ANSYS Workbench simulation 18
Chapter 3 Actuator Fabrication 21
3.1 Ag-IPMC fabrication Process 21
3.2 IPMC comparison 41
3.3 Reliability 44
Chapter 4 Optical Focus Tuning Experiments 47
4.1 Microlens array fabrication (Thermal reflow) 47
4.2 Module assembly 62
4.3 Focus tuning application test 63
Chapter 5 Conclusions 69
REFERENCE 70


[1] Electroactive Polymers and Devices 2013-2018: Forecasts, Technologies, Players. [Online]. Available:
http://www.idtechex.com/research/reports/electroactive-polymers-and-devices-2013-2018-forecasts-technologies-players-000347.asp?viewopt=desc
[2] K.A. Mauritz and R.B. Moore, “State of Understanding of Nafion,” Chem. Rev.,104, pp.4535-4585, 2004.
[3] Polymer Electrolyte Membrane Degradation and Mobility in Fuel Cells: a Solid-state NMR Investigation. [Online]. Available:
http://elib.uni-stuttgart.de/opus/volltexte/2010/5598/pdf/Thesis_Lida_Ghassemzadeh.pdf
[4] H.C. Chien, L.D. Tsai, C.P. Huang, C.Y. Kang, J.N. Lin and F. C. Chang, “Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells,” Journal of Hydrogen Energy, Vol. 38, pp. 13792-13801, 2003.
[5] DuPont fuel cells. [Online]. Available: http://www2.dupont.com/FuelCells/en_US/assets/downloads/dfc101.pdf
[6] Shahinpoor, M., “Ionic polymeric conductor nanocomposites (IPCNCs) as distributed nanosensors and nanoactuators,” Bioinspir. Biomim., Vol. 3, 035003, 2008.
[7] Bonomo C, Bottino M, Brunetto P, Di Pasquale G, Fortuna L,Graziani S and Pollicino A., “Tridimensional ionic polymer metal composites: optimization of the
manufacturing techniques,” Smart Mater. Struct., Vol. 19, No. 5, 055002, 2010.
[8] Kim S. M. and Kim K. J., “Palladium buffer-layered high performance ionic polymer–metal composites,” Smart Mater. Struct., Vol. 17, No. 3, 035011, 2008.
[9] Barramba, J., Silva, J. and Costa Branco, P. J., “Evaluation of dielectric gel coating for encapsulation of ionic polymer–metal composite (IPMC) actuators,” Sensors and Actuators A: Physical, Vol. 140, No. 2, pp.232-238, 2007.
[10] Park, Il-Seok, Sang-Mun Kim, and Kwang J. Kim, “Mechanical and thermal behavior of ionic polymer–metal composites: effects of electroded metals,” Smart Mater. Struct. Vol. 16, No. 4, pp.1090-1097, 2007
[11] Shahinpoor, Mohsen, et al., “Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review,” Smart materials and structures, Vol. 7, No. 6, R15, 1998.
[12] Tiwari, R., and K. J. Kim. “Disc-shaped ionic polymer metal composites for use in mechano-electrical applications,” Smart Materials and Structures, Vol. 19, No. 6, 065016, 2010
[13] Shahinpoor, Mohsen, and Kwang J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Materials and Structures, Vol. 9, No. 4, pp. 543-551, 2000.
[14] Brandell, Daniel, et al, “Electroactive polymer actuator for lens-drive unit in auto-focus compact camera module,” ETRI Journal, Vol. 31, No. 6, pp. 695-702, 2009.
[15] Wei-Lun Liang and Guo-Dung J. Su, " Wide-angle and ultrathin camera module using a curved hexagonal microlens array and all spherical surfaces," Applied Optics, Vol. 53, Issue 29, pp. H121-H128, 2014.
[16] Chuljin Kim, et al, “An auto-focus lens actuator using lonic polymer metal composites:Design, Fabrication and control,” International journal of precision engineering and manufacturing, Vol. 13, No. 10, pp. 1883-1887, 2012.
[17] Shahinpoor, Mohsen, and Kwang J. Kim, “The effect of surface-electrode resistance on the performance of ionic polymer-metal composite (IPMC) artificial muscles,” Smart Materials and Structures, Vol. 9, No. 4, pp. 543-551, 2000.
[18] Chung-Yi Yu, Yi-Wei Zhang, and Guo-Dung J. Su. "Reliability tests of ionic polymer metallic composites in dry air for actuator applications." Sensors and Actuators A: Physical 232 pp. 183-189 , 2015.
[19] D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Measurement Science and Technology, vol. 1, pp. 759-766, 1990.
[20] A. Schilling, R. Merz, C. Ossmann, and H. P. Herzig, “Surface profiles of reflow microlenses under the influence of surface tension and gravity,” Optical Engineering, vol. 39, pp. 2171-2176, 2000.
[21] P. Nussbaum, R. Völkel, H. P. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure and Applied Optics, vol. 6, pp. 617-636, 1997.
[22] F. T. O’Neill and J. T. Sheridan, “Photoresist reflow method of microlens production Part I: Background and experiments,” Optik, vol. 113, pp. 391-404, 2002.
[23] M. Zhang, J. Wu, L. Wang, K. Xiao and W. Wen, “A simple method for fabricating multi-layer PDMS structures for 3D microfluidic chips,” Lab Chip, vol. 10, pp. 1199-1203, 2010.
[24] J.-K. Chen, F.-H. Ko, K.-F. Hsieh, C.-T. Chou, and F.-C. Chang, “Effect of fluoroalkyl substituents on the reactions of alkylchlorosilanes with mold surfaces for nanoimprint lithography,” J. Vac. Sci. Technol. B, vol. 22, no. 6, pp. 3233-3241, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top