跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林昶志
研究生(外文):Chang-Zhi Lin
論文名稱:共培養臍帶血來源之內皮前驅細胞及間葉幹細胞於聚羥基烷酯電紡支架在血管組織工程之應用
論文名稱(外文):Co-culture of Cord Blood-Derived Endothelial Progenitor Cells and Mesenchymal Stem Cells on Electrospun Polyhydroxyalkanoate Scaffold for Vascular Tissue Engineering
指導教授:姚少凌
指導教授(外文):Chao-Ling Yao
口試委員:朱一民孫一明
口試委員(外文):I-Ming ChuYi-Ming Sun
口試日期:2016-06-27
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:86
中文關鍵詞:聚羥基烷酯血管組織工程內皮前驅細胞間葉幹細胞
外文關鍵詞:Poly(hydroxylalkanoates)Vascular tissue engineeringEndothelial progenitor cellsMesenchymal stem cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在組織工程中,發展血管組織進而修復器官及組織是現今醫學工程及再生醫學重要的課題,許多研究指出,一個組織工程良好的修復,在體內不僅僅需要依靠細胞、支架和訊息傳遞,也需要支架良好的血管化。同時證明,間葉幹細胞(Mesenchymal stem cells,MSCs)能有效幫助內皮細胞進行血管新生。本研究目的在共培養臍帶血來源之內皮前驅細胞(Endothelial progenitor cell,EPCs)以及間葉幹細胞,探討兩種細胞之中互利共生關係,並找出最佳共培養比例,再將細胞培養在使用靜電紡絲製備之生物可降解高分子支架聚3-羥基丁酯-co-3-羥基戊酯(Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV),探討細胞在生物高分子之生長情形與在血管組織工程之應用潛力。
首先EPCs以及MSCs從臍帶血經過利用Ficoll密度梯度離心法分離臍帶血之EPCs與MSCs後經過形態學、表面抗原及功能性分析鑑定。探討以不同比例之EPCs 與MSCs 共培養於2D平面之生長情形並評估共培養細胞形成血管能力以及遷移能力,再利用QPCR儀器以及ELISA儀器評估共培養細胞之基因表現量和蛋白質分泌量。接下來再將細胞共培養在3D之PHBV中,利用SEM以及免疫染色分析探討細胞形態學與細胞之間的比例,使用WST-1 assay評估細胞存活率與生長能力,最後再將共培養細胞結合生物高子支架進行動物實驗,探討支架及細胞在體內情形。
2D平面結果顯示,細胞在經過共培養後,MSCs能增強細胞遷移能力以及傷口修復,並且能釋放特殊的細胞因子促使細胞爬移,QPCR結果顯示,MSCs能增強EPCs的細胞分化增生能力,也能促進EPCs產生血管生成因。3D結果顯示,共培養的細胞能夠很好的生長在PHBV生物薄膜上,並且細胞能順向生長。結合以上結果,共培養EPCs以及MSCs能促進血管新生並能應用於血管組織工程發展。

關鍵字: 聚羥基烷酯、內皮前驅細胞、間葉幹細胞、血管組織工程。

Currently, repair and regeneration of tissue by engineered vascular tissue is an important research topic for biomedical engineering and regenerative medicine. Many studies indicated that growth of tissue not only depended on cell, scaffold and signal but also depended on vascular to supply nutrients and oxygen. In addition, many studies also demonstrated that mesenchymal stem cells (MSCs) can support and enhance endothelial progenitor cells (EPCs) to form angiogenesis. The aim of this study was to co-culture cord blood derived EPCs and MSCs on the 2-D surface (tissue plate) and 3-D scaffold to explore the application potential for vascular tissue engineering.
In this study, EPCs and MSCs were harvested from umbilical cord blood by density gradient centrifugation and the cells were recognized by morphology, surface antigen and functional analysis. Firstly, the symbiotic relationship between EPCs and MSCs were investigated on the 2-D surface and find the best co-culture ratio. Then, the MSCs and EPCs were co-cultured in the 3-D scaffold, electrospinning poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to investigate the behavior of cells, including cell growth and viability (by WST-1 assay), blood vessel forming capability, cell migration capability, gene expression and protein secretion with various ratios of co-cultured EPCs and MSCs. In addition, cell morphology also was checked using SEM and immunostaining analysis. Finally, the best ratio of MSCs and EPCs culture in the PHBV scaffold will implant into animal model to check in vivo function.
The 2D results showed that the growth rate of EPCs co-cultured with MSCs can grow faster than EPCs only and wound repairing rate can also be speeded up. Tube formation and QPCR results demonstrated that the two of best cell ratios of EPCs and MSCs for angiogenesis is 60 to 40 and 40 to 60. The 3D result show that the cell can grow in PHBV bio-membrane well. The SEM and immunostaining analysis demonstrated that cells can grow on PHBV orientation. Based on the above results, co-culture of EPCs and MSCs can effectively enhance neovascularization and would be promising cell sources for vascular tissue engineering.

Keywords: Poly(hydroxylalkanoates), Endothelial progenitor cells, Mesenchymal stem cells, Vascular tissue engineering.

目錄
摘要 I
Abstract III
誌謝 V
第一章、緒論 1
1.1 研究動機與目的 1
1.2 研究架構 3
第二章、文獻回顧 5
2.1 幹細胞(Stem cell)簡介 5
2.1.1 幹細胞定義 5
2.1.2 幹細胞分類 6
2.1.3幹細胞來源 7
2.2 內皮前驅細胞(Endothelial progenitor cell,EPCs)簡介 10
2.2.1 內皮前驅細胞 10
2.2.2 內皮前驅細胞之鑑定 13
2.2.3 內皮前驅細胞之功能機制 16
2.3 間葉幹細胞(Mesenchymal stem cells,MSCs)簡介 18
2.3.1 間葉幹細胞 18
2.3.2間葉幹細胞之鑑定 19
2.4細胞外間質 (Extracellular matrix,ECM) 20
2.4.1纖維連接蛋白(Fibronectin) 21
2.5血管組織工程 21
2.5.1血管組織 23
2.6生物可降解材料 25
2.6.1聚羥基烷酯(poly(hydroxylalkanoates),PHAs)簡介 25
2.6.2靜電紡絲製程(Electrospinning process) 27
2.7表面改質 28
2.7.1電漿處理 29
第三章、實驗材料與方法 30
3.1 實驗儀器 30
3.2 實驗藥品及耗材 31
3.2.1基礎培養基 31
3.2.2細胞激素 31
3.2.3流式細胞儀相關試劑 32
3.2.4 免疫染色分析相關抗體及藥品 33
3.2.5其他實驗藥劑 34
3.2.6實驗耗材 34
3.3培養動物細胞之基本技術 35
3.4 純化人類臍帶血單核細胞(Mononuclear cell,MNC) 36
3.5細胞來源 36
3.5.1建立內皮前驅細胞 36
3.5.2建立間葉幹細胞 39
3.6血球計數盤計數 (Neubauer hemocytometer) 40
3.7內皮前驅細胞與間葉幹細胞之共培養比例最適化 40
3.8細胞遷移能力 41
3.8.1細胞移行能力 (Migration) : 41
3.8.2侵入能力(Invasion) 41
3.9形成血管網路結構的能力 42
3.10細胞表面抗原分析(Cell surface antigen analysis) 43
3.11即時定量聚合酶連鎖反應(Quantitative real-time polymerase chain reaction,QPCR) 44
3.11.1 RNA萃取 45
3.11.2反轉錄聚合酶連鎖反應RT-PCR 46
3.11.3 即時定量聚合酶連鎖反應QPCR 46
3.12薄膜製備 49
3.12.1溶液配置 49
3.12.2電紡薄膜製備 49
3.12.3薄膜表面改質 49
3.12.4培養細胞於生物膜材上 50
3.13細胞存活率分析 WST-1 Assay 51
3.14細胞在生物薄膜上的型態 52
3.14.1免疫螢光染色 (Immunofluorescence staining) 52
3.14.2電子顯微鏡(Scanning Electron Microscope,SEM)細胞型態分析 53
第四章、實驗結果與討論 55
4.1內皮前驅細胞與間葉幹細胞之建立與分析 55
4.1.1內皮前驅細胞之鑑定 55
4.1.2間葉幹細胞之鑑定 57
4.1.3長時間培養-生長曲線 58
4.2共培養內皮前驅細胞以及間葉幹細胞 60
4.3共培養內皮前驅細胞以及間葉幹細胞之功能性分析 62
4.3.1 細胞遷移能力( Migration & Invasion ) 62
4.3.2血管網路形成能力 65
4.3.3特定基因表現分析 65
4.4共培養內皮前驅細胞以及間葉幹細胞於聚羥基烷酯電紡絲支架上 68
4.4.1免疫螢光染色分析 68
4.4.2 SEM 細胞表面型態分析 75
4.4.3細胞存活率分析 WST-1 Assay 78
第五章、結論與未來工作 80
5.1截至目前結論 80
5.2未來工作 81


[1] Moore K.A, Ema H, Lemischka IR. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood. 1997;89:4337-47.
[2] Danet HWL G.H, Luongo J.L,Simon M.C,.Bonnet D.A. Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34 cells after ex vivo expansion. Experimental Hematology. 2001;29:1465–73.
[3] Weissman I.L. . Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157-68.
[4] Fuchs E. SJA. Stem cells: a new lease on life. Cell. 2000;100:143-55.
[5] Jackson K.A., Majka S.M., Wang H, Pocius J, Hartley C.J., Majesky M.W., et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of clinical investigation. 2001;107:1395-402.
[6] Watt FM, Hogan BLM. Out of Eden: Stem cells and their niches. Science. 2000;287:1427-30.
[7] Wobus A.M. BKR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85:635-78.
[8] Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. Derivation of pluripotent stem cells from cultured human
primordial germ cells. Developmental Biology. 1998;95:13726-31.
[9] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-7.
[10] Krause D.S. TND, Collector M.I. , Henegariu O.,Hwang S. ,Gardner R. ,Neutzel S. ,Sharkis S.J. . Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369-77.
[11] Culter C, Antin J.H. . Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells. 2001;19:108-17.
[12] 姚少凌. 造血幹細胞體外增殖培養技術與應用. 2004.
[13] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861-72.
[14] Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? Journal of cellular and molecular medicine. 2009;13:87-102.
[15] Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. CD34− blood‐derived human endothelial cell progenitors. Stem Cells. 2001;19:304-12.
[16] Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS. Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PloS one. 2010;5:e9173.
[17] Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952-8.
[18] Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Ribo M, Alvarez-Sabin J, et al. Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular research. 2010;80:317-23.
[19] Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G, et al. Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Microvascular research. 2010;80:332-8.
[20] Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ. A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds. Tissue Engineering Part A. 2008;15:1533-42.
[21] F. Timmermans FVH, M. De Smedt, R. Raedt, F. Plasschaert, M.L. De Buyzere, T.C. Gillebert, J. Plum, B. Vandekerckhove. Endothelial outgrowth cells are not derived from CD133(+) cells or CD45(+) hematopoietic precursors. Arteriosclerosis Thrombosis and Vascular Biology. 2007;27:1572-9.
[22] Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arteriosclerosis, thrombosis, and vascular biology. 2007;27:1572-9.
[23] Caiado F, Carvalho T, Silva F, Castro C, Clode N, Dye JF, et al. The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials. 2011;32:7096-105.
[24] Yi K, Yu M, Wu L, Tan X. Effects of urotensin II on functional activity of late endothelial progenitor cells. Peptides. 2012;33:87-91.
[25] Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation research. 2004;95:343-53.
[26] Ceradini DJ, Gurtner GC. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends in cardiovascular medicine. 2005;15:57-63.
[27] Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Ribó M, Alvarez-Sabín J, et al. Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular research. 2010;80:317-23.
[28] Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, et al. CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry Part A : the journal of the International Society for Analytical Cytology. 2011;79:594-602.
[29] Deschaseaux F, Selmani Z, Falcoz PE, Mersin N, Meneveau N, Penfornis A, et al. Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. European journal of pharmacology. 2007;562:111-8.
[30] Smadja D.M., Corrnet A., Emmerich J., Aiach M.,Gaussem P., Endothelial progenitor cells: characterization, in vitroexpansion, and prospects for autologous cell therapy, Cell Biol Toxicol, 23 (2007) 223-239.
[31] Duan HX, Cheng LM, Jian-Wang, Hu LS, Lu GX. Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biology International. 2006;30:1018-27.
[32] Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, et al. A comparison of the tube forming potentials of early and late endothelial progenitor cells. Experimental cell research. 2008;314:430-40.
[33] Padfield GJ, Newby DE, Mills NL. Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. Journal of the American College of Cardiology. 2010;55:1553-65.
[34] Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. 2009;15:180-9.
[35] Deans RJ MA. Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology. 2000;28.
[36] Toma C PM, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105.
[37] Tse WT PJ, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75.
[38] Le Blanc K TL, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. scand j immunology. 2003.
[39] Di Nicola M C-SC, Magni M, Milanesi M, Longoni PD, Matteucci P. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99.
[40] Aggarwal S PM. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105.
[41] Kinnaird T SE, Burnett MS, Epstein SE. Bonemarrow- derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circulation research. 2004;95.
[42] Olson AL, McNiece IK. Novel clinical uses for cord blood derived mesenchymal stromal cells. Cytotherapy. 2015;17:796-802.
[43] Anissa S.H. Chan EC, Susan Tousey, Marnelle D. Andersen and Jessie H.T. Ni. IMPROVED EXPANSION OF MSC WITHOUT LOSS OF DIFFERENTIATION POTENTIAL.
[44] Dominici M LBK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-7.
[45] A. T. New Biology for Engineers and Computer Scientist. 台北:全華科技圖書有限公司. 2005;第六章.
[46] 劉登城. 膠原蛋白水解物於血壓調控之機制與應用. 食品工業. 2010.
[47] Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999;5:753-9.
[48] Bonassar LJ, Vacanti CA. Tissue engineering: the first decade and beyond. J Cell Biochem Suppl. 1998;30-31:297-303.
[49] Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108:1497-508.
[50] Smith P, Shuler FD, Georgescu HI, Ghivizzani SC, Johnstone B, Niyibizi C, et al. Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum. 2000;43:1156-64.
[51] O'Connor WJ, Botti T, Khan SN, Lane JM. The use of growth factors in cartilage repair. Orthopedic Clinics of North America. 2000;31:399-+.
[52] Chiellini E, Solaro R. Biodegradable polymeric materials. Advanced Materials. 1996;8:305-13.
[53] Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters. 1995;128:219-28.
[54] Yu BY, Chen PY, Sun YM, Lee YT, Young TH. Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films. Journal of biomaterials science Polymer edition. 2012;23:1-26.
[55] Yu BY, Chen PY, Sun YM, Lee YT, Young TH. Effects of the surface characteristics of polyhydroxyalkanoates on the metabolic activities and morphology of human mesenchymal stem cells. Journal of biomaterials science Polymer edition. 2010;21:17-36.
[56] Fu X. WH. Spatial arrangement of polycaprolactone/collagen nanofiber scaffolds regulates the wound healing related behaviors of human adipose stromal cells. Tissue engineering Part A. 2012;18:631-42.
[57] Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, et al. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules. 2007;8:1587-94.
[58] Sangsanoh P. WS, Suwantong O. ,Wutticharoenmongkol P. , Weeranantanapan O. Chuenjitbuntaworn , B. ,Cheepsunthorn P. , Pavasant P. ,Supaphol P. . In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules. 2007;8:1587-94.
[59] Masaeli E, Wieringa PA, Morshed M, Nasr-Esfahani MH, Sadri S, van Blitterswijk CA, et al. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine : nanotechnology, biology, and medicine. 2014;10:1559-69.
[60] P. Lemechko JR, D.L. Versace, J. Guezennec, C. Simon-Colin, P. Albanese, E. Renard, V. Langlois. Designing exopolysaccharide-graft-poly(3-hydroxyalkanoate) copolymersfor electrospun scaffolds. Reactive & Functional Polymers. 2013;73.
[61] A. Solouk BGC, F. Mirahmadi, H. Mirzadeh, M. R. Nadoushan, M.A. Shokrgozar, A.M. Seifalian. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymerfor bypass graft applications: A preliminary assessment of endothelialcell adhesion and haemocompatibility. 2015;46:400-8.
[62] Hsu SH, Lin CH, Tseng CS. Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication. 2012;4:015002.
[63] Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials. 2009;30:4401-6.
[64] Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials. 2010;31:8921-30.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top