|
[1] Moore K.A, Ema H, Lemischka IR. In vitro maintenance of highly purified, transplantable hematopoietic stem cells. Blood. 1997;89:4337-47. [2] Danet HWL G.H, Luongo J.L,Simon M.C,.Bonnet D.A. Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34 cells after ex vivo expansion. Experimental Hematology. 2001;29:1465–73. [3] Weissman I.L. . Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000;100:157-68. [4] Fuchs E. SJA. Stem cells: a new lease on life. Cell. 2000;100:143-55. [5] Jackson K.A., Majka S.M., Wang H, Pocius J, Hartley C.J., Majesky M.W., et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of clinical investigation. 2001;107:1395-402. [6] Watt FM, Hogan BLM. Out of Eden: Stem cells and their niches. Science. 2000;287:1427-30. [7] Wobus A.M. BKR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol Rev. 2005;85:635-78. [8] Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, et al. Derivation of pluripotent stem cells from cultured human primordial germ cells. Developmental Biology. 1998;95:13726-31. [9] Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145-7. [10] Krause D.S. TND, Collector M.I. , Henegariu O.,Hwang S. ,Gardner R. ,Neutzel S. ,Sharkis S.J. . Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369-77. [11] Culter C, Antin J.H. . Peripheral blood stem cells for allogeneic transplantation: a review. Stem Cells. 2001;19:108-17. [12] 姚少凌. 造血幹細胞體外增殖培養技術與應用. 2004. [13] Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell. 2007;131:861-72. [14] Timmermans F, Plum J, Yoder MC, Ingram DA, Vandekerckhove B, Case J. Endothelial progenitor cells: identity defined? Journal of cellular and molecular medicine. 2009;13:87-102. [15] Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC. CD34− blood‐derived human endothelial cell progenitors. Stem Cells. 2001;19:304-12. [16] Janic B, Guo AM, Iskander AS, Varma NR, Scicli AG, Arbab AS. Human cord blood-derived AC133+ progenitor cells preserve endothelial progenitor characteristics after long term in vitro expansion. PloS one. 2010;5:e9173. [17] Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95:952-8. [18] Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Ribo M, Alvarez-Sabin J, et al. Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular research. 2010;80:317-23. [19] Felice F, Lucchesi D, di Stefano R, Barsotti MC, Storti E, Penno G, et al. Oxidative stress in response to high glucose levels in endothelial cells and in endothelial progenitor cells: evidence for differential glutathione peroxidase-1 expression. Microvascular research. 2010;80:332-8. [20] Vermeulen P, Dickens S, Degezelle K, Van den Berge S, Hendrickx B, Vranckx JJ. A plasma-based biomatrix mixed with endothelial progenitor cells and keratinocytes promotes matrix formation, angiogenesis, and reepithelialization in full-thickness wounds. Tissue Engineering Part A. 2008;15:1533-42. [21] F. Timmermans FVH, M. De Smedt, R. Raedt, F. Plasschaert, M.L. De Buyzere, T.C. Gillebert, J. Plum, B. Vandekerckhove. Endothelial outgrowth cells are not derived from CD133(+) cells or CD45(+) hematopoietic precursors. Arteriosclerosis Thrombosis and Vascular Biology. 2007;27:1572-9. [22] Timmermans F, Van Hauwermeiren F, De Smedt M, Raedt R, Plasschaert F, De Buyzere ML, et al. Endothelial outgrowth cells are not derived from CD133+ cells or CD45+ hematopoietic precursors. Arteriosclerosis, thrombosis, and vascular biology. 2007;27:1572-9. [23] Caiado F, Carvalho T, Silva F, Castro C, Clode N, Dye JF, et al. The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. Biomaterials. 2011;32:7096-105. [24] Yi K, Yu M, Wu L, Tan X. Effects of urotensin II on functional activity of late endothelial progenitor cells. Peptides. 2012;33:87-91. [25] Urbich C, Dimmeler S. Endothelial progenitor cells: characterization and role in vascular biology. Circulation research. 2004;95:343-53. [26] Ceradini DJ, Gurtner GC. Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends in cardiovascular medicine. 2005;15:57-63. [27] Navarro-Sobrino M, Rosell A, Hernandez-Guillamon M, Penalba A, Ribó M, Alvarez-Sabín J, et al. Mobilization, endothelial differentiation and functional capacity of endothelial progenitor cells after ischemic stroke. Microvascular research. 2010;80:317-23. [28] Paprocka M, Krawczenko A, Dus D, Kantor A, Carreau A, Grillon C, et al. CD133 positive progenitor endothelial cell lines from human cord blood. Cytometry Part A : the journal of the International Society for Analytical Cytology. 2011;79:594-602. [29] Deschaseaux F, Selmani Z, Falcoz PE, Mersin N, Meneveau N, Penfornis A, et al. Two types of circulating endothelial progenitor cells in patients receiving long term therapy by HMG-CoA reductase inhibitors. European journal of pharmacology. 2007;562:111-8. [30] Smadja D.M., Corrnet A., Emmerich J., Aiach M.,Gaussem P., Endothelial progenitor cells: characterization, in vitroexpansion, and prospects for autologous cell therapy, Cell Biol Toxicol, 23 (2007) 223-239. [31] Duan HX, Cheng LM, Jian-Wang, Hu LS, Lu GX. Angiogenic potential difference between two types of endothelial progenitor cells from human umbilical cord blood. Cell Biology International. 2006;30:1018-27. [32] Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, et al. A comparison of the tube forming potentials of early and late endothelial progenitor cells. Experimental cell research. 2008;314:430-40. [33] Padfield GJ, Newby DE, Mills NL. Understanding the role of endothelial progenitor cells in percutaneous coronary intervention. Journal of the American College of Cardiology. 2010;55:1553-65. [34] Krenning G, van Luyn MJ, Harmsen MC. Endothelial progenitor cell-based neovascularization: implications for therapy. Trends Mol Med. 2009;15:180-9. [35] Deans RJ MA. Mesenchymal stem cells: biology and potential clinical uses. Experimental Hematology. 2000;28. [36] Toma C PM, Cahill KS, Byrne BJ, Kessler PD. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation. 2002;105. [37] Tse WT PJ, Beyer WM, Egalka MC, Guinan EC. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation. 2003;75. [38] Le Blanc K TL, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. scand j immunology. 2003. [39] Di Nicola M C-SC, Magni M, Milanesi M, Longoni PD, Matteucci P. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99. [40] Aggarwal S PM. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood. 2005;105. [41] Kinnaird T SE, Burnett MS, Epstein SE. Bonemarrow- derived cells for enhancing collateral development: mechanisms, animal data, and initial clinical experiences. Circulation research. 2004;95. [42] Olson AL, McNiece IK. Novel clinical uses for cord blood derived mesenchymal stromal cells. Cytotherapy. 2015;17:796-802. [43] Anissa S.H. Chan EC, Susan Tousey, Marnelle D. Andersen and Jessie H.T. Ni. IMPROVED EXPANSION OF MSC WITHOUT LOSS OF DIFFERENTIATION POTENTIAL. [44] Dominici M LBK, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315-7. [45] A. T. New Biology for Engineers and Computer Scientist. 台北:全華科技圖書有限公司. 2005;第六章. [46] 劉登城. 膠原蛋白水解物於血壓調控之機制與應用. 食品工業. 2010. [47] Bonadio J, Smiley E, Patil P, Goldstein S. Localized, direct plasmid gene delivery in vivo: prolonged therapy results in reproducible tissue regeneration. Nat Med. 1999;5:753-9. [48] Bonassar LJ, Vacanti CA. Tissue engineering: the first decade and beyond. J Cell Biochem Suppl. 1998;30-31:297-303. [49] Buschmann MD, Gluzband YA, Grodzinsky AJ, Hunziker EB. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci. 1995;108:1497-508. [50] Smith P, Shuler FD, Georgescu HI, Ghivizzani SC, Johnstone B, Niyibizi C, et al. Genetic enhancement of matrix synthesis by articular chondrocytes: comparison of different growth factor genes in the presence and absence of interleukin-1. Arthritis Rheum. 2000;43:1156-64. [51] O'Connor WJ, Botti T, Khan SN, Lane JM. The use of growth factors in cartilage repair. Orthopedic Clinics of North America. 2000;31:399-+. [52] Chiellini E, Solaro R. Biodegradable polymeric materials. Advanced Materials. 1996;8:305-13. [53] Steinbüchel A, Valentin HE. Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiology Letters. 1995;128:219-28. [54] Yu BY, Chen PY, Sun YM, Lee YT, Young TH. Response of human mesenchymal stem cells (hMSCs) to the topographic variation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) films. Journal of biomaterials science Polymer edition. 2012;23:1-26. [55] Yu BY, Chen PY, Sun YM, Lee YT, Young TH. Effects of the surface characteristics of polyhydroxyalkanoates on the metabolic activities and morphology of human mesenchymal stem cells. Journal of biomaterials science Polymer edition. 2010;21:17-36. [56] Fu X. WH. Spatial arrangement of polycaprolactone/collagen nanofiber scaffolds regulates the wound healing related behaviors of human adipose stromal cells. Tissue engineering Part A. 2012;18:631-42. [57] Sangsanoh P, Waleetorncheepsawat S, Suwantong O, Wutticharoenmongkol P, Weeranantanapan O, Chuenjitbuntaworn B, et al. In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules. 2007;8:1587-94. [58] Sangsanoh P. WS, Suwantong O. ,Wutticharoenmongkol P. , Weeranantanapan O. Chuenjitbuntaworn , B. ,Cheepsunthorn P. , Pavasant P. ,Supaphol P. . In vitro biocompatibility of schwann cells on surfaces of biocompatible polymeric electrospun fibrous and solution-cast film scaffolds. Biomacromolecules. 2007;8:1587-94. [59] Masaeli E, Wieringa PA, Morshed M, Nasr-Esfahani MH, Sadri S, van Blitterswijk CA, et al. Peptide functionalized polyhydroxyalkanoate nanofibrous scaffolds enhance Schwann cells activity. Nanomedicine : nanotechnology, biology, and medicine. 2014;10:1559-69. [60] P. Lemechko JR, D.L. Versace, J. Guezennec, C. Simon-Colin, P. Albanese, E. Renard, V. Langlois. Designing exopolysaccharide-graft-poly(3-hydroxyalkanoate) copolymersfor electrospun scaffolds. Reactive & Functional Polymers. 2013;73. [61] A. Solouk BGC, F. Mirahmadi, H. Mirzadeh, M. R. Nadoushan, M.A. Shokrgozar, A.M. Seifalian. Biomimetic modified clinical-grade POSS-PCU nanocomposite polymerfor bypass graft applications: A preliminary assessment of endothelialcell adhesion and haemocompatibility. 2015;46:400-8. [62] Hsu SH, Lin CH, Tseng CS. Air plasma treated chitosan fibers-stacked scaffolds. Biofabrication. 2012;4:015002. [63] Ye C, Hu P, Ma MX, Xiang Y, Liu RG, Shang XW. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering. Biomaterials. 2009;30:4401-6. [64] Dong Y, Li P, Chen CB, Wang ZH, Ma P, Chen GQ. The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials. 2010;31:8921-30.
|