|
[1]Reinitzer, F. (1888). Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie Chemical Monthly, 9(1), 421-441. [2]Butun, S., Sahiner, N. (2011). A versatile hydrogel template for metal nano particle preparation and their use in catalysis. Polymer, 52(21), 4834-4840. [3]Glöggler, S., Grunfeld, A. M., Ertas, Y. N., McCormick, J., Wagner, S., Schleker, P. P. M., Bouchard, L. S. (2015). A Nanoparticle Catalyst for Heterogeneous Phase Para‐Hydrogen‐Induced Polarization in Water. Angewandte Chemie International Edition, 54(8), 2452-2456. [4]Arshi, N., Ahmed, F., Kumar, S., Anwar, M. S., Koo, B. H., Lee, C. G. (2011). Comparative study of the Ag/PVP nanocomposites synthesized in water and in ethylene glycol. Current Applied Physics, 11(1), 346-349. [5]Vlasov, Y. A. (2012). Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. Communications Magazine, IEEE, 50(2), 67-72. [6]Carotenuto, G. (2001). Synthesis and characterization of poly (N‐vinylpyrrolidone) filled by monodispersed silver clusters with controlled size. Applied Organometallic Chemistry, 15(5), 344-351. [7]Valsecchi, C., Brolo, A. G. (2013). Periodic metallic nanostructures as plasmonic chemical sensors. Langmuir, 29(19), 5638-5649. [8]Naseri, M. G., Sadrolhosseini, A. R., Dehzangi, A., Kamalianfar, A., Saion, E. B., Zamiri, R., Majlis, B. Y. (2014). Silver nanoparticle fabrication by laser ablation in polyvinyl alcohol solutions. Chinese Physics Letters, 31(7), 77803-77806. [9]Zaluska, A., Zaluski, L., Ström–Olsen, J. O. (1999). Nanocrystalline magnesium for hydrogen storage. Journal of Alloys and Compounds, 288(1), 217-225. [10]Kawasaki, M., Uchiki, H. (1997). Sputter deposition of atomically flat Au (111) and Ag (111) films. Surface Science, 388(1), 1121-1125. [11]Reetz, M. T., Helbig, W., Quaiser, S. A. (1995). Electrochemical preparation of nanostructural bimetallic clusters. Chemistry of Materials, 7(12), 2227-2228. [12]Xue, C. H., Jia, S. T., Chen, H. Z., Wang, M. (2008). Superhydrophobic cotton fabrics prepared by sol–gel coating of TiO2 and surface hydrophobization. Science and Technology of Advanced Materials, 9(3), 1-5 [13]Hada, H., Yonezawa, Y., Akio, Y., & Kurakake, A. (1976). Photoreduction of silver ion in aqueous and alcoholic solutions. The Journal of Physical Chemistry, 80(25), 2728-2731. [14]Kora, A. J., Manjusha, R., Arunachalam, J. (2009). Superior bactericidal activity of SDS capped silver nanoparticles: synthesis and characterization. Materials Science and Engineering: C, 29(7), 2104-2109. [15]Naghavi, K., Saion, E., Rezaee, K., Yunus, W. M. M. (2010). Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiation Physics and Chemistry, 79(12), 1203-1208. [16]Mallick, K., Witcomb, M. J., Scurrell, M. S. (2005). Polymer-stabilized colloidal gold: a convenient method for the synthesis of nanoparticles by a UV-irradiation approach. Applied Physics A, 80(2), 395-398. [17]Hsu, S. L. C., Wu, R. T. (2007). Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Materials Letters, 61(17), 3719-3722. [18]Venkatesham, M., Ayodhya, D., Madhusudhan, A., Babu, N. V., Veerabhadram, G. (2014). A novel green one-step synthesis of silver nanoparticles using chitosan: catalytic activity and antimicrobial studies. Applied Nanoscience, 4(1), 113-119. [19]Mohan, Y. M., Raju, K. M., Sambasivudu, K., Singh, S., Sreedhar, B. (2007). Preparation of acacia‐stabilized silver nanoparticles: A green approach. Journal of Applied Polymer Science, 106(5), 3375-3381. [20]Sreekanth, T. V. M., Ravikumar, S., Eom, I. Y. (2014). Green synthesized silver nanoparticles using Nelumbonucifera root extract for efficient protein binding, antioxidant and cytotoxicity activities. Journal of Photochemistry and Photobiology B: Biology, 141, 100-105. [21]Zhang, Z., Zhao, B., Hu, L. (1996). PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. Journal of Solid State Chemistry, 121(1), 105-110. [22]Chou, K. S., Ren, C. Y. (2000). Synthesis of nanosized silver particles by chemical reduction method. Materials Chemistry and Physics, 64(3), 241-246. [23]Song, Y. J., Wang, M., Zhang, X. Y., Wu, J. Y., Zhang, T. (2014). Investigation on the role of the molecular weight of polyvinyl pyrrolidone in the shape control of high-yield silver nanospheres and nanowires. Nanoscale Research Letters, 9(1), 1-8. [24]Prost, J. (1995). The physics of liquid crystals. Oxford University Press. [25]Collings, P. J., Hird, M. (1997). Introduction to liquid crystals: chemistry and physics. CRC Press. [26]Oseen, C. W. (1933). The theory of liquid crystals. Transactions of the Faraday Society, 29(140), 883-899. [27]Frank, F. C. (1958). I. Liquid crystals. On the theory of liquid crystals. Discussions of the Faraday Society, 25, 19-28. [28]Schadt, M., Helfrich, W. (1971). Voltage‐dependent optical activity of a twisted nematic liquid crystal. Applied Physics Letters, 18(4), 127-128. [29]Tsukada, T. (1996). TFT/LCD: liquid-crystal displays addressed by thin-film transistors. Gordon and Breach. [30]Lueder, E. (2001). Liquid crystal display. John Wiely & Sons. [31]Nishida, N., Ohta, S., Toshima, N. (2012). Liquid crystal sol containing oleophilic Pd nanoparticles for liquid crystal device. Journal of Nanoscience and Nanotechnology, 12(1), 853-860. [32]Haraguchi, F., Inoue, K. I., Toshima, N., Kobayashi, S., Takatoh, K. (2007). Reduction of the threshold voltages of nematic liquid crystal electrooptical devices by doping inorganic nanoparticles. Japanese Journal of Applied Physics, 46(9), 796. [33]Shiraishi, Y., Uehara, T., Sawai, H., Kakiuchi, H., Kobayashi, S., Toshima, N. (2014). Electro-optic properties of liquid crystal devices doped with cucurbit (6) uril-protected zirconia nanowires. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 460, 90-94. [34]Sawai, H., Matsuura, T., Kakiuchi, H., Ohgi, T., Shiraishi, Y., Toshima, N. (2012). Preparation and electrooptic properties of liquid crystal devices doped with cucurbituril-protected gold nanowires. Chemistry Letters, 41(10), 1160-1162. [35]Urbanski, M., Mirzaei, J., Hegmann, T., Kitzerow, H. S. (2014). Nanoparticle doping in nematic liquid crystals: distinction between surface and bulk effects by numerical simulations. ChemPhysChem, 15(7), 1395-1404. [36]Atkins, P. W. (1998). Physical Chemistry. 6th. Oxford University Press. [37]何雍, (2006), 儀器分析總整理, 鼎茂圖書出版. [38]Alvarez-Ordóñez, A., Prieto, M. (2012). Fourier transform infrared spectroscopy in food microbiology. Springer. [39]Stangl, J., Mocuta, C., Chamard, V., Carbone, D. (2013). Nanobeam X-ray scattering: probing matter at the nanoscale. John Wiley & Sons. [40]Chahal, R. P., Mahendia, S., Tomar, A. K., Kumar, S. (2011). Effect of ultraviolet irradiation on the optical and structural characteristics of in-situ prepared PVP-Ag nanocomposites. Digest Journal of Nanomaterials and Biostructures, 6(1), 299-306. [41]Carotenuto, G., Pepe, G. P., Nicolais, L. (2000). Preparation and characterization of nano-sized Ag/PVP composites for optical applications. The European Physical Journal B-Condensed Matter and Complex Systems, 16(1), 11-17. [42]He, R., Qian, X., Yin, J., Zhu, Z. (2002). Preparation of polychrome silver nanoparticles in different solvents. Journal of Materials Chemistry, 12(12), 3783-3786. [43]Tan, Y., Dai, X., Li, Y., Zhu, D. (2003). Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant–potassium bitartrate. Journal of Materials Chemistry, 13(5), 1069-1075. [44]Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J. F., Avalos-Borja, M., Castillón-Barraza, F. F., Posada-Amarillas, A. (2008). Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol. Materials Research Bulletin, 43(1), 90-96. [45]Wang, H., Qiao, X., Chen, J., Wang, X., Ding, S. (2005). Mechanisms of PVP in the preparation of silver nanoparticles. Materials Chemistry and Physics, 94(2), 449-453. [46]Barmatov, E. B., Pebalk, D. A., Barmatova, M. V. (2004). Influence of silver nanoparticles on the phase behavior of side-chain liquid crystalline polymers. Langmuir, 20(25), 10868-10871. [47]Kim, J. S. (2007). Reduction of silver nitrate in ethanol by Poly (N-vinylpyrrolidone). Journal of Industrial and Engineering Chemistry, 13(4), 566-570. [48]Naghavi, K., Saion, E., Rezaee, K., Yunus, W. M. M. (2010). Influence of dose on particle size of colloidal silver nanoparticles synthesized by gamma radiation. Radiation Physics and Chemistry, 79(12), 1203-1208. [49]Mallick, K., Witcomb, M. J., Scurrell, M. S. (2005). Polymer-stabilized colloidal gold: a convenient method for the synthesis of nanoparticles by a UV-irradiation approach. Applied Physics A, 80(2), 395-398. [50]Yonezawa, Y., Sato, T., Ohno, M., Hada, H. (1987). Photochemical formation of colloidal metals. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 83(5), 1559-1567. [51]蘇品華, (2010), 循環式紫外光照射系統輔助乙醇合成扭曲向列型液晶分子保護奈米銀粒子之研究, 國立國立中興大學化學工程研究所 [52]Toshima, N. (2011). Polymer‐metal nanoparticle complexes for improving the performance of liquid crystal displays. Macromolecular Symposia, 304(1), 24-32. [53]Da Cruz, C., Sandre, O., Cabuil, V. (2005). Phase behavior of nanoparticles in a thermotropic liquid crystal. The Journal of Physical Chemistry B, 109(30), 14292-14299. [54]Basu, R., Iannacchione, G. S. (2010). Orientational coupling enhancement in a carbon nanotube dispersed liquid crystal. Physical Review E, 81(5), 051705-051705.
|