跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.34) 您好!臺灣時間:2025/10/31 01:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳明昌
研究生(外文):Ming-Chang Wu
論文名稱:結合OWA資訊整合運算子與群聚分析在分類問題之研究
論文名稱(外文):OWA based Clustering method for classification problem
指導教授:鄭景俗鄭景俗引用關係
指導教授(外文):Ching-Hsue Cheng
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:55
中文關鍵詞:資料前處理循序權重運算子(OWA operator)屬性選取整合值K均值法
外文關鍵詞:aggregated valuesK-Meansfeature selectiondata preprocessingOWA operator
相關次數:
  • 被引用被引用:0
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
資訊的分類在企業決策制定裡扮演一個重要的角色。隨著資訊科技的進步,我們可以比從前得到了更多的資料或資訊。然而,在分類問題上,許多任務都有高複雜度跟高維度問題。所以,我們用循序權重運算子(OWA operator),將多屬性資料融合為單一屬性整合值,且分群整合值於分類問題上。這方法由四個主要步驟組成:(1) 利用逐步回歸選出重要的屬性並排列、(2) 利用循序權重運算子得到單一屬性整合值、 (3) 用K均值法(K-Means)將整合值分群 (4) 預測測試資料的分群。經由處理下列三個資料集來驗證:(1)鳶尾花(Iris)、(2)威斯康辛乳癌與 (3)台灣某中小型企業的關鍵績效指標資料集。由實驗結果可得,本文所提出來的方法可以降低高複雜度跟高維度問題,且在分類準確率上皆比先前一些研究所提出來的方法來的準確。
Information classification plays an important role in decision-making problems. As information technology advances, large amounts of information stored in database. Data preprocessing is necessary because some data is dirty. Many tasks are worked out in high complexity and dimensionality in classification problem. Therefore, we apply ordered weighted averaging (OWA) operator to fusion multi-attribute data into the aggregated values of single attribute, and cluster the aggregated values for classification tasks. The proposed method consists of four steps: (1) use stepwise regression to select and order the important attribute, (2) utilize OWA operator to get aggregated values of single attribute from multi-attribute data, (3) cluster the aggregated values by K-Means method, (4) predict the clusters of testing data. In verification and comparison, three datasets: (1) Iris, (2) Wisconsin-breast-cancer and (3) Key Performance Indicators datasets are conducted by the proposed method. The problems of high complexity and dimensionality are solved and the classification accuracy rate is higher than some existing methods.
摘要 I
ABSTRACT II
致謝 III
Content IV
List of Figures V
List of Tables VI
List of Tables VI
List of Appendix VII
1. Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Objective 2
1.4 Research Limitations 3
1.5 Thesis Organization 3
2. Related works 5
2.1 Order Weighted Averaging, OWA 5
2.1.1 Yager’s OWA 5
2.1.2 Fuller and Majlender’s OWA 6
2.2 Feature Selection 7
2.3 Multiple linear regression 8
2.3.1 Stepwise regression 9
2.3.2 Beta coefficient 10
2.4 Clustering 11
2.4.1 K-Means 11
2.4.2 K-Means algorithm 11
3. Proposed method 13
3.1 Research Framework 13
3.2 The proposed algorithm 16
4. Experiments and comparisons 18
4.1 Iris dataset 18
4.2 Wisconsin-breast-cancer (WBC) dataset 26
4.3 Key Performance Indicators dataset 28
5. Conclusion 30
Reference: 31
Appendix A: 36
[1]Abonyi, J., Szeifert, F., (2003), Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers, Pattern Recognition Letters 24, 2195-2007
[2]Ahn, B.S., (2006), On the properties of OWA operator weights functions with constant level of orness, IEEE TRANSACTIONS ON FUZZY SYSTEMS, 14 (4), 511-515.
[3]Bandyopadhyay, S., Maulik, U., (2002), An evolutionary technique based on K-Means algorithm for optimal clustering in RN, Information Sciences 146, 221–237.
[4]Chang, J.R., Cheng, C.H., (2006), MCDM Aggregation Model by ME-OWA and ME-OWGA Operators, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 14 (4), 421-443.
[5]Chatterjee, A., Rakshit, A., (2004), Influential rule search scheme (IRSS) - a new fuzzy pattern classifier, IEEE Transactions on Knowledge and Data Engineering, 16, 881 – 893.
[6]Chen, S.M., & Tsai, F.M., (2004), A new approach to construct membership functions and generate fuzzy rules from training instances, Fuzzy Systems, IEEE International Conference , 2(25-29), 831 – 836 .
[7]Daniel, W.W., & Terrell, J.C., (1995), Business Statistics for management and economics, (7th ed.), Houghton Mifflin Company
[8]Das, S., (2001), Filters, wrappers and a boosting-based hybrid for feature selection, Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA, 74–81.
[9]Draper, N.R., Smith, H., (1998), Applied Regression Analysis, John Wiley and Sons, New York.
[10]Dunham, Margaret H., (2002), Data mining introductory and advanced topics, Pearson Education, Inc.
[11]Fuller R., Majlender P., (2001), An analytic approach for obtaining maximal entropy OWA operator weights, Fuzzy Sets and Systems, 124, 53-57.
[12]Han, J., Kamber, M., (2006), Data Mining:Concepts and Techniques 2nd Edition, Morgan Kaufmann.
[13]Hong, T. P., Chen, J. B., (1999), Finding relevant attributes and membership functions, Fuzzy Sets and Systems, 103 (3), 389-404,.
[14]Hong, T. P., & Lee, C. Y., (1996), Induction of fuzzy rules and membership functions from training examples. Fuzzy Sets and Systems, 84(1), 33-47.
[15]Ishibuchi, H., Nakashima, T., (2001), Effect of Rule Weights in Fuzzy Rule-Based Classification Systems, IEEE Trans. Fuzzy Systems, 9(4), 506-515.
[16]Jain, A. K., & Chandrasekaran, B., (1982), Dimensionality and Sample Size Considerations in Pattern Recognition Practice. In P. R. Krishnaiah, & L. N. Kanal (Eds.), Handbook of Statistics, North-Holland, 2, 835-855.
[17]Kohavi, R., & John, G. H., (1997), Wrappers for feature subset selection. Artificial Intelligence, 97(1–2), 273–324.
[18]Konstam, A., (1998), Group classification using a mix of genetic programming and genetic algorithms, ACM Press.
[19]Kuo, R. J., Wang, S., HU, T.L., and CHOU, S. H., (2005), Application of ant K-means on clustering analysis, Computers and Mathematics with Applications, 50, 1709-1724.
[20]Lee, H.-M., Chen, C.-M., Chen J.-M., Jou Y.-L., (2001), An Efficient Fuzzy Classifier with Feature Selection Based on Fuzzy Entropy, IEEE Trans. Systems, Man, and Cybernetics - Part B: Cybernetics, 31(3), 426-432.
[21]Lin, Chin-Teng., Yeh, Chang-Mao., Liang, Sheng-Fu., Chung, Jen-Feng., Kumar, N., (2006), Support-vector-based fuzzy neural network for pattern classification, IEEE Transactions on Fuzzy Systems, 14, 31-41.
[22]Liu, H., Motoda, H., & Yu, L. (2004). A selective sampling approach to active feature selection. Artificial Intelligence, 159(1-2), 49-74.
[23]Liu, X., (2004), Three methods for generating monotonic OWA operator weights with given orness level, Journal of Southeast University, 20 (3), 369-373
[24]Liu, X., (2006), Some Properties of the Weighted OWA Operator, IEEE, Transactions on system, man, and cybernetics-part B:Cybernetics, 36 (1), 118-127
[25]McClave, J. T., Benson, P. G., Sincich, (2005), Statistics for business and economics 9th ed, Prentice Hall.
[26]Nauck, D., Kruse, R., (1999), Obtaining interpretable fuzzy classification rules from medical data, Artif. Intell. Med. 16, 149-169.
[27]O’Hagan M., (1988), Aggregating template or rule antecedents in real-time expert systems with fuzzy set logic, Proc. 22nd Annu. IEEE Asilomar Conf. Signals, Systems, Computers, Pacific Grove, CA, 681-689.
[28]Pe�狒-Reyes, C.A., Sipper, M. (2000), A fuzzy genetic approach to breast cancer diagnosis, Artif. Intell. Med. 17, 131-155.
[29]Qin, Z., Lawry, J., (2005), Decision tree learning with fuzzy labels, Information Sciences, 172, 91–129.
[30]Setiono, R., (2000), Generating concise and accurate classification rules for breast cancer diagnosis, Artif. Intell. Med. 18, 205-219.
[31]Setiono, R., (1997), Neural-network feature selector IEEE Trans. Neural Networks, 8, 654–662.
[32]Tsai, F. M., Chen, S. M., (2002), A new method for constructing membership functions and generating fuzzy rules for fuzzy classification systems, Proceedings of 2002 Tenth National Conference on Fuzzy Theory and its Application. Hsinchu. Taiwan Republic of China.
[33]Valet, L., Mauris, G., Bolon, Ph., (2000), A statistical overview of recent literature in information fusion, Proc. of the 3re International Conference on Information Fusion, MoC3-22-29, 7-14
[34]Wang, Jia-Wen, Cheng, Ching-Hsue, (2006), Fuzzy Clustering-based on aggregate attribute method, IEA/AIE, France, Lecture Notes in Computer Science, 4031, 478-487.
[35]Wayne, W., Daniel, James, C., Terrell, (1995) Business statistics :for management and economics 7th ed. Boston :Houghton Mifflin Co.,
[36]Yager, R.R., (1988), On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Trans. On SMC, 18, 183-190.
[37]Yager, R.R., (2004), Modeling Prioritized Multicriteria Decision Making, IEEE Transactions on system, man, and cybernetics-part B:Cybernetics, 23(6), 2396-2403.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top