|
[1]N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling,” in Proc. VLSI Technology Symp., 1999, pp. 73–74. [2]M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-mm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117-1122, Jul. 1998. [3]M. Pertijs, K. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σinaccuracy of ±0.1℃ from -55℃ to 125℃”, IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005. [4]I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 7, pp. 876–884, Jul. 2001. [5]I. M. Filanovsky, Su Tam Lim, “Temperature Sensor Applications of Diode-Connected MOS Transistors,” Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, Vol. 2, pp. 149-152, May 2002. [6]Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, 2nd ed., OXFORD, New York, 2002. [7]Poki Chen, Chun-chi Chen, Chin-Chung Tsai, and Wen-Fu Lu, “A Time-to-Digital-Converter-Based CMOS Temperature Sensor,” IEEE J. Solid-State Circuit, vol. 40, NO. 8, pp. 1642-1648, Aug. 2005. [8]Franco Fiori and Paolo Stefano, “A New Compact Temperature-Compensated CMOS Current Reference,” IEEE Trans. Circuits Syst. Ⅱ, Express Briefs, vol. 52, no. 11, pp. 724-728, Nov. 2005. [9]“HSPICE and HSPICE RF Documentation,” Z-2007. 03 Synopsys Online Documentation, Synopsys. [10]TSMC1P6M process technology file. [11]M. sasaki, M.Ikeda, and K. Asada, “A Temperature Sensor With an Inaccuracy of -1/+0.8℃ Using 90nm 1-V CMOS for Online Thermal Monitoring of VLSI circuits,” IEEE J. Solid-State Circuits, vol. 21, No. 2, May 2008. [12]Poki Chen, Chun-Chi Chen, Yu-Han Peng, Kai-Ming Wang and Yu-Shin Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of -0.4℃~+0.6℃ Over a 0℃ to 90℃ Range,” IEEE J. Solid-State Circuits, vol. 45, pp. 600-609, March 2010. [13]Wei-Cheng Lee, Hung-Chih Lin, and Tsin-Yuan Chang, “A Novel CMOS Smart Temperature Sensor for On-Line Thermal Monitoring,” VLSI Design/CAD Symposium, Aug. 2007. [14]吳紹懋, 95S187 CMOS A/D 及 D/A 設計與測試應用技術, 上課講義, Sept. 2006. [15]H. P. Le, A. Zayegh and J. Singh, “A 12-bit high performance low cost pipeline ADC,” in Proc. IEEE’ 12, 2003, Paper 10.1109, p. 471-474. [16]Texas Instruments, Data Converter Selection Guide, 2009. [17]D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, Inc., 1997. [18]Y. J. Chen, K. T. Tang, and W. C. Fang, “An 8μW 100kS/s Successive Approximation ADC for Biomedical Applications,” IEEE Int. Conf. NIH, pp. 176, April. 2009. [19]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-μW successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261-1265, Jul. 2003. [20]M. D. Scott, B. E. Boser, and K. S. J. Pister, “An ultra-low power ADC for distributed sensor networks,” in Proc. 28th Eur. Solid-State Circuits Conf., Florence, Italy, Sept. 2002, pp. 255-58. [21]You-Kuang Chang, Chao-Shiun Wang and Chorng-Kuang wang, “A 8-bit 500-kS/s Low Power SAR ADC for Bio-Medical Applications,” IEEE Asian Solid-State Circuits Conference, 2007. [22]Hao-Chiao Hong and Guo-Ming Lee, “A 65-fJ/conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE Journal of Solid-State Circuits, Vol. 42, no. 10, pp. 2161-2168. Oct. 2007. [23]C. J. B. Fayomi, G. W. Roberts, and M. Sawan, “A 1-V, 10-bit rail-to-rail successive approximation analog-to-digital converter in standard 0.18μm CMOS technology,” In PROC. IEEE Int. Symp. Circuits and System (ISCAS), 2001, pp. 460-463. [24]Hoonki Kim, YoungJae Min, Yonghwan Kim, and Soowon Kim, “A Low Power Consumption 10-bit Rail-to-rail SAR ADC Using a C-2C Capacitor Array,” IEEE Int. Conf. Electron Devices and Solid-State Circuits. pp. 1-4, Dec. 2009. [25]T. O. Anderson, “Optimum control logic for successive approximation A-D converters,” Comput. Design, vol. 11, no. 7, pp. 81-86, July 1972. [26]M. D. Scott, B. E. Boser, and K. S. J. Pister, “An ultralow-energy ADC for smart dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123-1129, Jul. 2003. [27]Lungui Zhong, Haigang Yang, and Chong Zhang, “Design of an Embedded CMOS CR SAR ADC for low Power Applications in Bio-Sensor SOC,” IEEE Int. Conf. Electronics, Circuits and Systems, Oct. 2007, pp. 668-671. [28]Anton Bakker, ”CMOS Smart Temperature Sensor – An Overview,” Proc IEEE Sensor, vol. 2, pp. 1423-1427, Jun. 2002. [29]M. Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.5 C From 50 C to 120 C,” in IEEE ISSCC Dig. Tech. Papers, vol. 1, pp. 200–201, Feb. 2003. [30]Ken Ueno, Tetsuya Hirose, Tetsuya Asai and Yoshihito Amemiya, “ultralow-Power Smart Temperature Sensor with Subthrehold CMOS Circuits,” ISPACS, 2006, pp. 546-549. [31]Saumou Wu, Lin Yi-Fan and Chen Chien-Nan, “A New Low-Power CMOS Smart Temperature Sensor with Low Sensitivity to Process Varaition,” Conference on Design and Architectures for signal and Image Processing (DASIP), France, November 2009. [32]E. Alpman, H. Lakdawala, L. R. Carley, and K. Soumyanath, “A 1.1V 50mW 2.5 GS/s 7b time-interleaved C-2C SAR ADC in 45nmLP digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 76-77. [33]B. P. Ginsburg and A. P. Chandrakasan, “A 500 MS/s 5b ADC in 65-nm CMOS,” in IEEE Symp. VLSI Circuits, Jun. 2007. Pp. 174-475. [34]Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, and Ying-Zu Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” in IEEE J. Solid-State Circuits. Vol. 45, no. 4, pp. 731-740, April, 2010. [35]Yi-Fan Lin, A New CMOS Smart Temperature Sensor with Low Sensitivity to Process Variation, M. Eng. thesis, Yuan-Ze University, 2009.
|