跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/03 05:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建男
研究生(外文):Chien-Nan Chen
論文名稱:應用於無線射頻辨識系統之新式溫度感測器與十位元類比數位轉換器
論文名稱(外文):A New CMOS Temperature Sensor with 10-Bit SAR ADC for RFID Applications
指導教授:吳紹懋
指導教授(外文):Sau-Mou Wu
學位類別:碩士
校院名稱:元智大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:118
中文關鍵詞:被動式之超高頻無線辨識系統溫度補償溫度飄移溫度感測器低消耗功率低電源連續漸進式類比數位轉換器
外文關鍵詞:Passive UHF RFIDTemperature compensationTemperature driftTemperature SensorLow powerLow Supply VoltageSAR ADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:314
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文提出一應用於電池支援之被動式UHF RFID無線CMOS之溫度感測晶片。本溫度感測晶片利用Diode-connected NMOS FET的VGS的壓降來量測溫度,感測結果則透過低功耗且具7.2-Bit解析度之連續漸進式類比數位轉換器產生相對應溫度之數位值。此外,為了與RFID系統整合,我們也另設計一介面電路來完成通信協定和同步程序的問題。整體電路設計皆符合1.8伏特電壓源以及TSMC 0.18µm CMOS 1P6M標準製程。當溫度從10°C變化至100°C,輸出電壓則以5.41 mV/℃的變化率從0.82伏特變化至0.28伏特,解析度達0.162℃。而溫度偏差則介於-1.1℃和0.65℃之間。在25℃時,整體系統消耗功率為57.48μW,佈局面積為0.8615 × 0.8111 mm2。

A new CMOS temperature sensor with battery assistance is proposed for passive UHF RFID applications in this thesis. The proposed temperature sensor employs the diode-connected NMOS FET transistor to sense VGS voltage variation in different temperature. The sensing result will converse into the corresponding digital value by a low power successive approximation register ADC which has the resolution of 7.2 bits. In addition, we also designed an interface circuit to make the communication and synchronization for RFID integration. The prototype circuit are designed from a supply of 1.8V in the TSMC 0.18µm CMOS 1P6M standard process. The output voltage swings goes from 0.82V to 0.28V with 0.162℃ temperature resolution which corresponding to the temperature variation goes from 10°C to 100°C. The temperature deviation is between -1.1℃ and 0.65℃. The entire system power consumption is about 57.48μW at 25℃, and the layout area is about 0.8615 × 0.8111 mm2.

List of Contents

摘要.......................................................I
ABSTRACT..................................................II
Acknowledgements.........................................III
List of Contents..........................................IV
List of Figures..........................................VII
List of Tables............................................XI

Chapter 1..................................................1
Introduction...............................................1
1.1 Background and Motivation.............................1
1.2 Preview of Previous Work..............................3
1.3 Requirements of the System............................6
1.4 Thesis Organization...................................7

Chapter 2 .................................................8
The Design of the Proposed Temperature Sensor.............8
2.1 Temperature Effects for Mobility and Threshold Voltage...................................................10
2.2 Effect for Process Variation.........................13
2.3 Current Source with Temperature Compensation.........14
2.4 Analysis of the Proposed Temperature Sensor..........18
2.4.1 Subtraction and Amplifier Stage...................20
2.4.2 The Linearity of Proposed Temperature Sensor......26

Chapter 3 ................................................30
Successive Approximation Register Analog to Digital Converter ................................................30
3.1 ADC Architectures....................................31
3.1.1 Flash ADC.........................................33
3.1.2 Pipeline ADC......................................34
3.1.3 Delta-Sigma (ΔΣ) ADC.............................35
3.1.4 Successive Approximation (SAR) ADC................36
3.1.5 Summary of ADC Specifications.....................38
3.2 The Principle of SAR ADC.............................40
3.2.1 SAR ADC Architecture and Operation................42
3.3 Proposed 0.9V 10-bit 227kS/s SAR ADC.................44
3.3.1 Sample & Hold.....................................44
3.3.2 The Complementary Comparator......................48
3.3.3 Successive Approximation Register (SAR)...........54
3.3.4 DAC Capacitor Array...............................57
3.4 Simulation Result....................................62
3.4.1 Static Simulation.................................62
3.4.2 Dynamic Simulation................................64
3.4.3 Performance comparison of ADCs....................67

Chapter 4.................................................71
The Interface Design......................................71
4.1 Interface Design and Considerations..................71
4.1.1 Procedure.........................................73
4.2 Circuit Realization..................................75
4.2.1 Simulation Result.................................76

Chapter 5.................................................79
Measurement...............................................79
5.1 Circuit Implementation and Testing Consideration.....79
5.1.1 Chip Micrograph...................................82
5.1.2 PCB Board Presentation............................84
5.2 Test Plan and Measurement Results....................85
5.2.1 Temperature Sensor................................85
5.2.2 SAR ADC...........................................89
5.2.3 Whole system......................................94

Chapter 6.................................................99
Conclusion and Future Work................................99
6.1 Conclusion...........................................99
6.2 Future Work.........................................101

Bibliography.............................................102



[1]N. Kimizuka, T. Yamamoto, T. Mogami, K. Yamaguchi, K. Imai, and T. Horiuchi, “The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on MOSFET scaling,” in Proc. VLSI Technology Symp., 1999, pp. 73–74.
[2]M. Tuthill, “A switched-current, switched-capacitor temperature sensor in 0.6-mm CMOS,” IEEE J. Solid-State Circuits, vol. 33, no. 7, pp. 1117-1122, Jul. 1998.
[3]M. Pertijs, K. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σinaccuracy of ±0.1℃ from -55℃ to 125℃”, IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2805-2815, Dec. 2005.
[4]I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 7, pp. 876–884, Jul. 2001.
[5]I. M. Filanovsky, Su Tam Lim, “Temperature Sensor Applications of Diode-Connected MOS Transistors,” Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on, Vol. 2, pp. 149-152, May 2002.
[6]Phillip E. Allen and Douglas R. Holberg, CMOS Analog Circuit Design, 2nd ed., OXFORD, New York, 2002.
[7]Poki Chen, Chun-chi Chen, Chin-Chung Tsai, and Wen-Fu Lu, “A Time-to-Digital-Converter-Based CMOS Temperature Sensor,” IEEE J. Solid-State Circuit, vol. 40, NO. 8, pp. 1642-1648, Aug. 2005.
[8]Franco Fiori and Paolo Stefano, “A New Compact Temperature-Compensated CMOS Current Reference,” IEEE Trans. Circuits Syst. Ⅱ, Express Briefs, vol. 52, no. 11, pp. 724-728, Nov. 2005.
[9]“HSPICE and HSPICE RF Documentation,” Z-2007. 03 Synopsys Online Documentation, Synopsys.
[10]TSMC1P6M process technology file.
[11]M. sasaki, M.Ikeda, and K. Asada, “A Temperature Sensor With an Inaccuracy of -1/+0.8℃ Using 90nm 1-V CMOS for Online Thermal Monitoring of VLSI circuits,” IEEE J. Solid-State Circuits, vol. 21, No. 2, May 2008.
[12]Poki Chen, Chun-Chi Chen, Yu-Han Peng, Kai-Ming Wang and Yu-Shin Wang, “A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of -0.4℃~+0.6℃ Over a 0℃ to 90℃ Range,” IEEE J. Solid-State Circuits, vol. 45, pp. 600-609, March 2010.
[13]Wei-Cheng Lee, Hung-Chih Lin, and Tsin-Yuan Chang, “A Novel CMOS Smart Temperature Sensor for On-Line Thermal Monitoring,” VLSI Design/CAD Symposium, Aug. 2007.
[14]吳紹懋, 95S187 CMOS A/D 及 D/A 設計與測試應用技術, 上課講義, Sept. 2006.
[15]H. P. Le, A. Zayegh and J. Singh, “A 12-bit high performance low cost pipeline ADC,” in Proc. IEEE’ 12, 2003, Paper 10.1109, p. 471-474.
[16]Texas Instruments, Data Converter Selection Guide, 2009.
[17]D. Johns and K. Martin, Analog Integrated Circuit Design. New York: John Wiley & Sons, Inc., 1997.
[18]Y. J. Chen, K. T. Tang, and W. C. Fang, “An 8μW 100kS/s Successive Approximation ADC for Biomedical Applications,” IEEE Int. Conf. NIH, pp. 176, April. 2009.
[19]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-μW successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261-1265, Jul. 2003.
[20]M. D. Scott, B. E. Boser, and K. S. J. Pister, “An ultra-low power ADC for distributed sensor networks,” in Proc. 28th Eur. Solid-State Circuits Conf., Florence, Italy, Sept. 2002, pp. 255-58.
[21]You-Kuang Chang, Chao-Shiun Wang and Chorng-Kuang wang, “A 8-bit 500-kS/s Low Power SAR ADC for Bio-Medical Applications,” IEEE Asian Solid-State Circuits Conference, 2007.
[22]Hao-Chiao Hong and Guo-Ming Lee, “A 65-fJ/conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE Journal of Solid-State Circuits, Vol. 42, no. 10, pp. 2161-2168. Oct. 2007.
[23]C. J. B. Fayomi, G. W. Roberts, and M. Sawan, “A 1-V, 10-bit rail-to-rail successive approximation analog-to-digital converter in standard 0.18μm CMOS technology,” In PROC. IEEE Int. Symp. Circuits and System (ISCAS), 2001, pp. 460-463.
[24]Hoonki Kim, YoungJae Min, Yonghwan Kim, and Soowon Kim, “A Low Power Consumption 10-bit Rail-to-rail SAR ADC Using a C-2C Capacitor Array,” IEEE Int. Conf. Electron Devices and Solid-State Circuits. pp. 1-4, Dec. 2009.
[25]T. O. Anderson, “Optimum control logic for successive approximation A-D converters,” Comput. Design, vol. 11, no. 7, pp. 81-86, July 1972.
[26]M. D. Scott, B. E. Boser, and K. S. J. Pister, “An ultralow-energy ADC for smart dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123-1129, Jul. 2003.
[27]Lungui Zhong, Haigang Yang, and Chong Zhang, “Design of an Embedded CMOS CR SAR ADC for low Power Applications in Bio-Sensor SOC,” IEEE Int. Conf. Electronics, Circuits and Systems, Oct. 2007, pp. 668-671.
[28]Anton Bakker, ”CMOS Smart Temperature Sensor – An Overview,” Proc IEEE Sensor, vol. 2, pp. 1423-1427, Jun. 2002.
[29]M. Pertijs, A. Niederkorn, M. Xu, B. McKillop, A. Bakker, and J. H. Huijsing, “A CMOS Smart Temperature Sensor With a 3σ Inaccuracy of 0.5 C From 50 C to 120 C,” in IEEE ISSCC Dig. Tech. Papers, vol. 1, pp. 200–201, Feb. 2003.
[30]Ken Ueno, Tetsuya Hirose, Tetsuya Asai and Yoshihito Amemiya, “ultralow-Power Smart Temperature Sensor with Subthrehold CMOS Circuits,” ISPACS, 2006, pp. 546-549.
[31]Saumou Wu, Lin Yi-Fan and Chen Chien-Nan, “A New Low-Power CMOS Smart Temperature Sensor with Low Sensitivity to Process Varaition,” Conference on Design and Architectures for signal and Image Processing (DASIP), France, November 2009.
[32]E. Alpman, H. Lakdawala, L. R. Carley, and K. Soumyanath, “A 1.1V 50mW 2.5 GS/s 7b time-interleaved C-2C SAR ADC in 45nmLP digital CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2009, pp. 76-77.
[33]B. P. Ginsburg and A. P. Chandrakasan, “A 500 MS/s 5b ADC in 65-nm CMOS,” in IEEE Symp. VLSI Circuits, Jun. 2007. Pp. 174-475.
[34]Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang, and Ying-Zu Lin, “A 10-bit 50-MS/s SAR ADC with a Monotonic Capacitor Switching Procedure,” in IEEE J. Solid-State Circuits. Vol. 45, no. 4, pp. 731-740, April, 2010.
[35]Yi-Fan Lin, A New CMOS Smart Temperature Sensor with Low Sensitivity to Process Variation, M. Eng. thesis, Yuan-Ze University, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊