|
[1]J. Bu and M. H. White, “Improvement in Retention Reliability of SONOS Nonvolatile Memory Devices by Two-step High Temperature Deuterium Anneals”, lntemational Reliability Physics Symposium, 2001 IEEE International, (2001) pp. 52-56 [2]B. Govoreanu, P. Blomme, M. Rosmeulen and J. V. Houdt, “VARIOT: A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices”, IEEE Electron Device Letters, Vol. 24, No. 2, (2003) pp. 99-101 [3]P. H. Tsai, K. S. C. Liao, T. Y. Wu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee and M. J. Tsai, “Novel SONOS-Type Nonvolatile Memory Device with Stacked Tunneling and Charge-Trapping Layers”, Semiconductor Device Research Symposium, 2007 International, (2007) pp. 1-2 [4]H. B. Chen, Y. C. Wu, L. J. Chen, J. H. Chiang, M. F. Hung, H. K. Yang and C. Y. Chang, “Amorphous Silicon Charge Storage Layer of Nonvolatile Memory with Trigate Nanowires Structure”, Nanoelectronics Conference (INEC), 2011 IEEE 4th International, (2011) pp.1-2 [5] Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li and H. C. Wu, “Nitrided Tetragonal ZrO2 as the Charge-Trapping Layer for Nonvolatile Memory Application”, IEEE Electron Device Letters, Vol. 30, No. 12, (2009) pp. 1290-1292 [6] Y. H. Wu, L. L. Chen, J. R. Wu, M. L. Wu, C. C. Lin and C. H. Chang, “Nonvolatile Memory With Nitrogen-Stabilized Cubic-Phase ZrO2 as Charge-Trapping Layer”, IEEE Electron Device Letters, Vol. 31, No. 9, (2010) pp. 1008-1010 [7] C. H. Chen, C. H. Liao, C. T. Lin, J. C. Wang, P. W. Huang and C. S. Lai, “Effects of HfO2 Trapping Layer in Gd2O3 Nanocrystal Nonvolatile Memory with Multi-tunneling Layers”, Electron Devices and Solid-State Circuits (EDSSC), 2011 International Conference of, (2011) pp. 1-3 [8] H. H. Hsu, I. Y. K. Chang and J. Y. M. Lee, “Metal–Oxide–High-κ Dielectric–Oxide–Semiconductor (MOHOS) Capacitors and Field-Effect Transistors for Memory Applications”, IEEE Electron Device Letters, Vol. 28, No. 11, (2007) pp. 964-966 [9] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo and B. J. Cho, “Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation”, IEEE Trans. Electron Devices, Vol. 53, No. 4, (2006) pp. 654-662 [10] X. D. Huang, Johnny K. O. Sin and P. T. Lai, “Fluorinated SrTiO3 as Charge-Trapping Layer for Nonvolatile Memory Applications”, IEEE Trans. Electron Devices, Vol. 58, No. 12, (2011) pp. 4235-4240 [11] F. H. Chen, T. M. Pan and F. C. Chiu, “Metal–Oxide–High-k-Oxide–Silicon Memory Device Using a Ti-Doped Dy2O3 Charge-Trapping Layer and Al2O3 Blocking Layer”, IEEE Trans. Electron Devices, Vol. 58, No. 11, (2011) pp. 3847-3851 [12] M. Yun, D. W. Mueller, M. Hossain, V. Misra and S. Gangopadhyay, “Sub-2 nm Size-Tunable High-Density Pt Nanoparticle Embedded Nonvolatile Memory”, IEEE Electron Device Letters, Vol. 30, No. 12, (2009) pp. 1362-1364 [13] Z. Xu, C. Zhu, Z. Huo, Y. Cui and Y. Wang, “Improved performance of non-volatile memory with Au-Al2O3 core-shell nanocrystals embedded in HfO2 matrix”, Appl. Phys. Lett., Vol. 100, No. 20, (2012) pp. 23059 [14] P. K. Singh, R. Hofmann, K. K. Singh, N. Krishna and S. Mahapatra, “ Performance and Reliability of Au and Pt Single-Layer Metal Nanocrystal Flash Memory Under NAND (FN/FN) Operation”, IEEE Trans. Electron Devices, Vol. 56, No. 9, (2009) pp. 2065-2072 [15] X. D. Huang, J. K. O. Sin and P. T. Lai, “Nitrided La2O3 as Charge-Trapping Layer for Nonvolatile Memory Applications”, IEEE Trans. Electron Devices, Vol. 12, No. 2, (2012) pp. 306-310 [16] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo and C. C. Chi, “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention”, VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on, (2006) pp.44-45 [17] T. M. Pan, J. S. Jung and F. H. Chen, “Metal-oxide-high-k-oxide-silicon memory structure incorporating a Tb2O3 charge trapping layer”, Appl. Phys. Lett., Vol. 97, No. 1, (2010) pp. 012906 [18] J. Pu, D. S. H. Chan, S. J. Kim and B. J. Cho, “Aluminum-Doped Gadolinium Oxides as Blocking Layer for Improved Charge Retention in Charge-Trap-Type Nonvolatile Memory Devices”, IEEE Trans. Electron Devices, Vol. 56, No. 11, (2009) pp. 2739-2745 [19] H, N. Lee, Y. T. Kim and Y. K. Park, “Memory window of highly c-axis oriented ferroelectric YMnO3 thin films”, Appl. Phys. Lett., Vol. 74, No. 25, (1999) pp. 3887-3889 [20] T. M. Pan, W. W. Yeh and J. W. Chen, “Formation of stacked oxide/Y2TiO5/oxide layers for flash memory application”, Appl. Phys. Lett., Vol. 91, No. 6, (2007) pp. 062909 [21] C. H. Tu, T. C. Chang, P. T. Liu, H. C. Liu and S. M. Sze, “Improved memory window for Ge nanocrystals embedded in SiON layer”, Appl. Phys. Lett., Vol. 89, No. 16, (2006) pp. 162105 [22] C. H. Lai, C. C. Huang, K. C. Chiang, H. L. Kao, W. J. Chen, A. Chin and C. C. Chi, “Fast High-K AIN MONOSMemory with Large MemoryWindow and Good Retention”, Device Research Conference Digest, 2005. DRC ''05. 63rd, Vol. 1, (2005) pp. 99-100 [23] C. L. Yuan, P. Darmawan, Y. Setiawan, P. S. Lee and J. Ma, “Formation of SrTiO3 nanocrystals in amorphous Lu2O3 high-k gate dielectric for floating gate memory application”, Appl. Phys. Lett., Vol. 89, No. 4, (2006) pp. 043104
[24] F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen and P. H. Yeh, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory application”, Appl. Phys. Lett., Vol. 90, No. 22, (2007) pp. 222104 [25] S. Maikap, W. Banerjee, P. J. Tzeng, T. Y. Wang, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang,M. J. Kao and M. J. Tsai, “Highly Thermally Stable and Reproducible of ALD RuO2 Nanocrystal Floating Gate Memory Devices with Large Memory Window and Good Retention”, VLSI Technology, Systems and Applications, 2008. VLSI-TSA 2008. International Symposium on, (2008) pp.50-51 [26] C. Zhou, P. Peng, Y. Yang and T. Ren, “Characteristics of Metal-Pb (Zr0.53Ti0.47)O3 -TiO2-Si Capacitor for Nonvolatile Memory Applications”, Nano/Micro Engineered and Molecular Systems (NEMS), 2011 IEEE International Conference on, (2011) pp. 134-137 [27] L. C. Chen, Y. C. Wu, T. C. Lin, J. Y. Huang, M. F. Hung, J. H. Chen and C. Y. Chang, “Poly-Si Nanowire Nonvolatile Memory With Nanocrystal Indium–Gallium–Zinc–Oxide Charge-Trapping Layer”, IEEE Electron Device Letters, Vol. 31, No. 12, (2010) pp. 1407-1409 [28] S. Cui, C. Y. Peng, W. Zhang, X. Sun, J. Yang, Z. Liu, L. Kornblum, M. Eizenberg and T. P. Ma, “High-Quality Al2O3 for Low-Voltage High-Speed High-Temperature (Up to 250 ℃) Nonvolatile Memory Technology”, IEEE Electron Device Letters, Vol. 31, No. 12, (2010) pp. 1443-1445 [29] L. Chen, Y. Xu, Q. Q. Sun, P. Zhou, P. F. Wang, S. J. Ding and D. W. Zhang, “Atomic-Layer-Deposited HfLaO-Based Resistive Switching Memories With Superior Performance”, IEEE Electron Device Letters, Vol. 31, No. 11, (2010) pp. 1296-1298 [30] C. L. Cheng, J. H. Horng and H. Y. Tsai, “Electrical and physical characteristics of HfLaON-gated metal–oxide-semiconductor capacitors with various nitrogen concentration profiles”, Microelectronic Engineering, Vol. 88, No. 2, (2011) pp. 159-165 [31] K. C. Chiang and T. E. Hsieh, “Effect of Nitrogen Incorporation to AgInSbTe-SiO2 Nanocomposite Thin Films Applied to Nonvolatile Floating Gate Memory”, IEEE Transactions on Magnetics, Vol. 47, No. 3, (2011) pp. 656-662 [32] J. T. Jeng, and G. S. Chen, “Automatic measurement systems for electrical and reliability characteristics of nonvolatile memory devices“ International J. Intelligent Systems Science and Technology., vol. 3, No. 2, pp. 49-56, 2011.
|