跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭嘉祥
研究生(外文):Chia-Hsiang Cheng
論文名稱:具氧化鏑電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究
論文名稱(外文):Memory Characteristics of Metal-Oxide-Semiconductor Structured Nonvolatile Memory Capacitors with Dysprosium Oxides as Charge Trapping Layers
指導教授:鄭錦隆
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:光電與材料科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:85
中文關鍵詞:高介電係數材料氧化鏑非揮發性記憶體電荷捕捉層快速熱退火
外文關鍵詞:High-k dielectricsDysprosium oxideNonvolatile memoryCharge trapping layerRapid-thermal annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,藉由高介電係數材料的引入,探討具氧化鏑(Dy2O3)電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究,並藉由評估遲滯窗口、寫入時間、抹除時間、耐久力及保持力等五項特性獲得最佳氧化鏑電荷捕捉層。首先利用快速熱退火爐搭配不同溫度製作不同的二氧化矽當作金氧半電容記憶體元件之穿遂氧化層,接著探討利用濺鍍機沈積之氧化鏑電荷捕捉層之熱退火特性研究,改變不同沉積後熱退火溫度,獲得最佳氧化鏑電荷捕捉層。接著,為了達到操作更快速與低操作電壓的目的,改變不同阻擋層與氧化鏑電荷捕捉層堆疊厚度比例,改善具氧化鏑電荷捕捉層之金氧半結構的特性;最後利用不同量的白金(Pt)摻雜氧化鏑當做金氧半結構非揮發性記憶體元件之電荷捕捉層。
實驗結果顯示,當二氧化矽穿遂層氧化溫度為900 ℃,同時氧化鏑沉積後熱退火溫度為750 ℃時,其寫入特性較佳。而當二氧化矽/氧化鏑堆疊層為20/15 nm時,其在正負19 V的遲滯可達3.24 V。且從遲滯結果獲得記憶機制為電洞捕捉為主,同時在此組合情況下會有較佳的寫入及抹除特性。此外,在具氧化鏑電荷捕捉層之金氧半結構非揮發性記憶體元件中,以白金摻雜氧化鏑30秒時,其在正負19 V的遲滯增至為11.48 V,且擁有更快的寫入時間且降低操作電壓。


Characteristics of metal-oxide-semiconductor (MOS) structured nonvolatile memory (NVM) devices with various dysprosium oxide (Dy2O3) dielectrics as charge trapping nodes have been presented in this study. The memory characteristics include hysteresis, programming/erasing time, endurance, and retention. First, various tunneling oxides were formed by tuning various rapid thermal annealing (RTA) temperatures. Then, the effects of post-deposition annealing (PDA) on Dy2O3 charge trapping layer of MOS structured NVM were investigated. Furthermore, characteristics of MOS structured NVM devices with various stacked SiO2/Dy2O3 dielectrics as blocking oxide/charge trapping nodes have been also presented. Finally, the effects of Pt-doped Dy2O3 dielectrics as charge trapping layers on characteristics of MOS structured NVM devices were demonstrated.
The results suggest that the better programming time can be demonstrated for the capacitor with the SiO2 tunneling oxide annealing at 900 ℃ and the Dy2O3 trapping layer treated at 750 ℃. Then, capacitance-voltage (C-V) measurements estimate that the memory window of 3.24 V was achieved during the C-V hysteresis sweep at ?19 V. The hysteresis characteristics measurements illustrate that the memory is mainly due to holes trapping. The larger memory window and the better erasing characteristic as well as the better programming characteristic, attributable to the thicker trapping layer (Dy2O3 dielectrics) and the thinner blocking oxide layer (SiO2). Thus, the stacked SiO2/Dy2O3 dielectric of 20/15 nm was demonstrated for MOS nonvolatile memory device applications. Moreover, a larger hysteresis shift of 11.48 V sweep at ±19 V, a faster programming time, and a lower operated voltage can be achieved by the Pt-doped Dy2O3 ¬trapping layer under the sputtering time of 30 s.


目錄
摘要.....i
Abstract.....ii
誌謝.....iii
目錄.....iv
表目錄.....vii
圖目錄.....viii
第一章 緒論.....1
1.1 高介電係數閘極介電層(High-k dielectric)發展概述.....1
1.2 研究動機.....4
1.3 論文架構.....4
第二章 元件製程與量測.....6
2.1 探討不同穿遂層氧化熱處理溫度對具Dy2O3電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究.....6
2.1.1 晶圓處理.....6
2.1.2 穿隧氧化層製程.....7
2.1.3 電荷捕捉層製程.....7
2.1.4 阻擋氧化層製程.....7
2.1.5 上下電極製程 .....7
2.2 探討不同電荷捕捉層沉積後熱處理溫度對具Dy2O3電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究.....8
2.2.1 晶圓處理.....8
2.2.2 穿隧氧化層製程.....8
2.2.3 電荷捕捉層製程.....8
2.2.4 阻擋氧化層製程.....9
2.2.5 上下電極製程 .....9
2.3 探討不同阻擋層與電荷捕捉層堆疊厚度比例對具Dy2O3電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究.....9
2.3.1 晶圓處理.....9
2.3.2 穿隧氧化層製程.....10
2.3.3 電荷捕捉層製程.....10
2.3.4 阻擋氧化層製程.....10
2.3.5 上下電極製程 .....10
2.4 探討不同量的白金摻雜對具Dy2O3電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究.....10
2.4.1 晶圓處理.....11
2.4.2 穿隧氧化層製程.....11
2.4.3 電荷捕捉層製程.....11
2.4.4 阻擋氧化層製程.....11
2.4.5 上下電極製程 .....12
2.5 電性及可靠度量測方法.....12
2.5.1 遲滯(Hysteresis)特性量測.....12
2.5.2 寫入時間(Programming Times)特性量測.....12
2.5.3 抹除時間(Erasing Times)特性量測.....12
2.5.4 耐久力(Endurance)特性量測.....13
2.5.5 保持力(Retention)特性量測.....13
第三章 具氧化鏑電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究.....26
3.1 探討不同穿遂層氧化熱處理溫度對具Dy2O3電荷捕捉層之金氧半結構非揮發性記憶體元件特性研究.....26
3.1.1 遲滯特性(Hysteresis).....26
3.1.2 寫入時間特性(Programming Times).....27
3.1.3 抹除時間特性(Erasing Times).....27
3.1.4 耐久力特性(Endurance, P/E cycles).....27
3.1.5 保持力特性(Retention).....27
3.1.6 結論.....28
3.2 探討不同電荷捕捉層沉積後熱處理溫度對具Dy2O3電荷捕捉層之非揮發性記憶體元件特性研究.....28
3.2.1 遲滯特性(Hysteresis).....28
3.2.2 寫入時間特性(Programming Times).....28
3.2.3 抹除時間特性(Erasing Times).....29
3.2.4 耐久力特性(Endurance, P/E cycles).....29
3.2.5 保持力特性(Retention).....29
3.2.6 結論.....30
3.3 探討不同阻擋層與電荷捕捉層堆疊厚度比例對具Dy2O3電荷捕捉層之非揮發性記憶體元件特性研究.....30
3.3.1 遲滯特性(Hysteresis).....30
3.3.2 寫入時間特性(Programming Times).....30
3.3.3 抹除時間特性(Erasing Times).....31
3.3.4 耐久力特性(Endurance, P/E cycles).....31
3.3.5 保持力特性(Retention).....32
3.3.6 結論.....32
3.4 探討不同量的白金摻雜對具Dy2O3電荷捕捉層之非揮發性記憶體元件特性研究.....32
3.4.1 遲滯特性(Hysteresis).....32
3.4.2 寫入時間特性(Programming Times).....33
3.4.3 抹除時間特性(Erasing Times).....33
3.4.4 耐久力特性(Endurance, P/E cycles).....33
3.4.5 保持力特性(Retention).....34
3.4.6 結論.....34
第四章 總結與建議.....82
4.1總結.....82
4.2建議.....82
參考文獻.....83
英文論文大綱
作者簡歷

[1]J. Bu and M. H. White, “Improvement in Retention Reliability of SONOS Nonvolatile Memory Devices by Two-step High Temperature Deuterium Anneals”, lntemational Reliability Physics Symposium, 2001 IEEE International, (2001) pp. 52-56
[2]B. Govoreanu, P. Blomme, M. Rosmeulen and J. V. Houdt, “VARIOT: A Novel Multilayer Tunnel Barrier Concept for Low-Voltage Nonvolatile Memory Devices”, IEEE Electron Device Letters, Vol. 24, No. 2, (2003) pp. 99-101
[3]P. H. Tsai, K. S. C. Liao, T. Y. Wu, T. K. Wang, P. J. Tzeng, C. H. Lin, L. S. Lee and M. J. Tsai, “Novel SONOS-Type Nonvolatile Memory Device with Stacked Tunneling and Charge-Trapping Layers”, Semiconductor Device Research Symposium, 2007 International, (2007) pp. 1-2
[4]H. B. Chen, Y. C. Wu, L. J. Chen, J. H. Chiang, M. F. Hung, H. K. Yang and C. Y. Chang, “Amorphous Silicon Charge Storage Layer of Nonvolatile Memory with Trigate Nanowires Structure”, Nanoelectronics Conference (INEC), 2011 IEEE 4th International, (2011) pp.1-2
[5] Y. H. Wu, L. L. Chen, Y. S. Lin, M. Y. Li and H. C. Wu, “Nitrided Tetragonal ZrO2 as the Charge-Trapping Layer for Nonvolatile Memory Application”, IEEE Electron Device Letters, Vol. 30, No. 12, (2009) pp. 1290-1292
[6] Y. H. Wu, L. L. Chen, J. R. Wu, M. L. Wu, C. C. Lin and C. H. Chang, “Nonvolatile Memory With Nitrogen-Stabilized Cubic-Phase ZrO2 as Charge-Trapping Layer”, IEEE Electron Device Letters, Vol. 31, No. 9, (2010) pp. 1008-1010
[7] C. H. Chen, C. H. Liao, C. T. Lin, J. C. Wang, P. W. Huang and C. S. Lai, “Effects of HfO2 Trapping Layer in Gd2O3 Nanocrystal Nonvolatile Memory with Multi-tunneling Layers”, Electron Devices and Solid-State Circuits (EDSSC), 2011 International Conference of, (2011) pp. 1-3
[8] H. H. Hsu, I. Y. K. Chang and J. Y. M. Lee, “Metal–Oxide–High-κ Dielectric–Oxide–Semiconductor (MOHOS) Capacitors and Field-Effect Transistors for Memory Applications”, IEEE Electron Device Letters, Vol. 28, No. 11, (2007) pp. 964-966
[9] Y. N. Tan, W. K. Chim, W. K. Choi, M. S. Joo and B. J. Cho, “Hafnium Aluminum Oxide as Charge Storage and Blocking-Oxide Layers in SONOS-Type Nonvolatile Memory for High-Speed Operation”, IEEE Trans. Electron Devices, Vol. 53, No. 4, (2006) pp. 654-662
[10] X. D. Huang, Johnny K. O. Sin and P. T. Lai, “Fluorinated SrTiO3 as Charge-Trapping Layer for Nonvolatile Memory Applications”, IEEE Trans. Electron Devices, Vol. 58, No. 12, (2011) pp. 4235-4240
[11] F. H. Chen, T. M. Pan and F. C. Chiu, “Metal–Oxide–High-k-Oxide–Silicon Memory Device Using a Ti-Doped Dy2O3 Charge-Trapping Layer and Al2O3 Blocking Layer”, IEEE Trans. Electron Devices, Vol. 58, No. 11, (2011) pp. 3847-3851
[12] M. Yun, D. W. Mueller, M. Hossain, V. Misra and S. Gangopadhyay, “Sub-2 nm Size-Tunable High-Density Pt Nanoparticle Embedded Nonvolatile Memory”, IEEE Electron Device Letters, Vol. 30, No. 12, (2009) pp. 1362-1364
[13] Z. Xu, C. Zhu, Z. Huo, Y. Cui and Y. Wang, “Improved performance of non-volatile memory with Au-Al2O3 core-shell nanocrystals embedded in HfO2 matrix”, Appl. Phys. Lett., Vol. 100, No. 20, (2012) pp. 23059
[14] P. K. Singh, R. Hofmann, K. K. Singh, N. Krishna and S. Mahapatra, “ Performance and Reliability of Au and Pt Single-Layer Metal Nanocrystal Flash Memory Under NAND (FN/FN) Operation”, IEEE Trans. Electron Devices, Vol. 56, No. 9, (2009) pp. 2065-2072
[15] X. D. Huang, J. K. O. Sin and P. T. Lai, “Nitrided La2O3 as Charge-Trapping Layer for Nonvolatile Memory Applications”, IEEE Trans. Electron Devices, Vol. 12, No. 2, (2012) pp. 306-310
[16] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J. Kwo and C. C. Chi, “Very Low Voltage SiO2/HfON/HfAlO/TaN Memory with Fast Speed and Good Retention”, VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on, (2006) pp.44-45
[17] T. M. Pan, J. S. Jung and F. H. Chen, “Metal-oxide-high-k-oxide-silicon memory structure incorporating a Tb2O3 charge trapping layer”, Appl. Phys. Lett., Vol. 97, No. 1, (2010) pp. 012906
[18] J. Pu, D. S. H. Chan, S. J. Kim and B. J. Cho, “Aluminum-Doped Gadolinium Oxides as Blocking Layer for Improved Charge Retention in Charge-Trap-Type Nonvolatile Memory Devices”, IEEE Trans. Electron Devices, Vol. 56, No. 11, (2009) pp. 2739-2745
[19] H, N. Lee, Y. T. Kim and Y. K. Park, “Memory window of highly c-axis oriented ferroelectric YMnO3 thin films”, Appl. Phys. Lett., Vol. 74, No. 25, (1999) pp. 3887-3889
[20] T. M. Pan, W. W. Yeh and J. W. Chen, “Formation of stacked oxide/Y2TiO5/oxide layers for flash memory application”, Appl. Phys. Lett., Vol. 91, No. 6, (2007) pp. 062909
[21] C. H. Tu, T. C. Chang, P. T. Liu, H. C. Liu and S. M. Sze, “Improved memory window for Ge nanocrystals embedded in SiON layer”, Appl. Phys. Lett., Vol. 89, No. 16, (2006) pp. 162105
[22] C. H. Lai, C. C. Huang, K. C. Chiang, H. L. Kao, W. J. Chen, A. Chin and C. C. Chi, “Fast High-K AIN MONOSMemory with Large MemoryWindow and Good Retention”, Device Research Conference Digest, 2005. DRC ''05. 63rd, Vol. 1, (2005) pp. 99-100
[23] C. L. Yuan, P. Darmawan, Y. Setiawan, P. S. Lee and J. Ma, “Formation of SrTiO3 nanocrystals in amorphous Lu2O3 high-k gate dielectric for floating gate memory application”, Appl. Phys. Lett., Vol. 89, No. 4, (2006) pp. 043104

[24] F. M. Yang, T. C. Chang, P. T. Liu, U. S. Chen and P. H. Yeh, “Nickel nanocrystals with HfO2 blocking oxide for nonvolatile memory application”, Appl. Phys. Lett., Vol. 90, No. 22, (2007) pp. 222104
[25] S. Maikap, W. Banerjee, P. J. Tzeng, T. Y. Wang, C. H. Lin, T. C. Tien, L. S. Lee, J. R. Yang,M. J. Kao and M. J. Tsai, “Highly Thermally Stable and Reproducible of ALD RuO2 Nanocrystal Floating Gate Memory Devices with Large Memory Window and Good Retention”, VLSI Technology, Systems and Applications, 2008. VLSI-TSA 2008. International Symposium on, (2008) pp.50-51
[26] C. Zhou, P. Peng, Y. Yang and T. Ren, “Characteristics of Metal-Pb (Zr0.53Ti0.47)O3 -TiO2-Si Capacitor for Nonvolatile Memory Applications”, Nano/Micro Engineered and Molecular Systems (NEMS), 2011 IEEE International Conference on, (2011) pp. 134-137
[27] L. C. Chen, Y. C. Wu, T. C. Lin, J. Y. Huang, M. F. Hung, J. H. Chen and C. Y. Chang, “Poly-Si Nanowire Nonvolatile Memory With Nanocrystal Indium–Gallium–Zinc–Oxide
Charge-Trapping Layer”, IEEE Electron Device Letters, Vol. 31, No. 12, (2010) pp. 1407-1409
[28] S. Cui, C. Y. Peng, W. Zhang, X. Sun, J. Yang, Z. Liu, L. Kornblum, M. Eizenberg and T. P. Ma, “High-Quality Al2O3 for Low-Voltage High-Speed High-Temperature (Up to 250 ℃) Nonvolatile Memory Technology”, IEEE Electron Device Letters, Vol. 31, No. 12, (2010) pp. 1443-1445
[29] L. Chen, Y. Xu, Q. Q. Sun, P. Zhou, P. F. Wang, S. J. Ding and D. W. Zhang, “Atomic-Layer-Deposited HfLaO-Based Resistive Switching Memories With Superior Performance”, IEEE Electron Device Letters, Vol. 31, No. 11, (2010) pp. 1296-1298
[30] C. L. Cheng, J. H. Horng and H. Y. Tsai, “Electrical and physical characteristics of HfLaON-gated metal–oxide-semiconductor capacitors with various nitrogen concentration profiles”, Microelectronic Engineering, Vol. 88, No. 2, (2011) pp. 159-165
[31] K. C. Chiang and T. E. Hsieh, “Effect of Nitrogen Incorporation to AgInSbTe-SiO2 Nanocomposite Thin Films Applied to Nonvolatile Floating Gate Memory”, IEEE Transactions on Magnetics, Vol. 47, No. 3, (2011) pp. 656-662
[32] J. T. Jeng, and G. S. Chen, “Automatic measurement systems for electrical and reliability characteristics of nonvolatile memory devices“ International J. Intelligent Systems Science and Technology., vol. 3, No. 2, pp. 49-56, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [21] 柴康偉,2012,”探討行動化學習對學生學習動機及滿意度之影響”,遠東學報,29卷,1期,頁43~54。
2. [11] 蘇怡如,彭心儀,周倩,2004,”行動學習之定義與要素”,教學科技與媒體,70期,頁4~14。
3. [21] 柴康偉,2012,”探討行動化學習對學生學習動機及滿意度之影響”,遠東學報,29卷,1期,頁43~54。
4. [11] 蘇怡如,彭心儀,周倩,2004,”行動學習之定義與要素”,教學科技與媒體,70期,頁4~14。
5. [4] 陳大魁,2002,”談從9年一貫到12年一貫數學銜接的幾個面向”,科學教育月刊,253期,頁51~57。
6. [3] 鄒景平,2006,”數位學習的四項要素”,研習論壇,71期,頁24~29。
7. [4] 陳大魁,2002,”談從9年一貫到12年一貫數學銜接的幾個面向”,科學教育月刊,253期,頁51~57。
8. [3] 鄒景平,2006,”數位學習的四項要素”,研習論壇,71期,頁24~29。
9. [22] 鐘樹椽,江玄宏,林秋斌,2009,”行動合作學習對國小學童等值分數解題表現與表徵能力之研究”,理工研究學報,43卷,1期,頁55~70。
10. [22] 鐘樹椽,江玄宏,林秋斌,2009,”行動合作學習對國小學童等值分數解題表現與表徵能力之研究”,理工研究學報,43卷,1期,頁55~70。
11. [33] 黃富順,1996,”增強成人學習者的學習動機”,成人教育,34期,頁2~8。
12. [33] 黃富順,1996,”增強成人學習者的學習動機”,成人教育,34期,頁2~8。