跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/26 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹聖凱
研究生(外文):Sheng-Kai Chan
論文名稱:雙極充電對次微米微粒膠結效率影響之研究
論文名稱(外文):Effect of operating parameters on submicron particle agglomeration by bipolar charging system
指導教授:林文印林文印引用關係
指導教授(外文):Wen-Yinn Lin
口試委員:蘇春熺陳志傑
口試委員(外文):Chun-Hsi SuChih-Chieh Chen
口試日期:2014-01-10
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:環境工程與管理研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:70
中文關鍵詞:次微米微粒靜電膠結帶電微粒
外文關鍵詞:Submicron particleAgglomerationParticle charge
相關次數:
  • 被引用被引用:0
  • 點閱點閱:484
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
靜電膠結技術是一種利用電能讓微粒產生移動,並且在移動的過程中與其他微粒碰撞而膠結在一起的技術。膠結後微粒之數目濃度會降低,粒徑大小會增加。靜電膠結之操作步驟為:1.微粒經由兩種不同極性的電暈充電器來帶電。2.利用交流電場讓微粒移動,導致微粒與微粒相互碰撞而膠結。然而,過去的研究對於次微米微粒的膠結效率仍有待改善,因此本研究將設置一套靜電膠結系統,探討實驗系統的操作參數對次微米微粒膠結效率的影響。
研究結果顯示,微粒數目中位數粒徑、數目平均數粒徑及數目幾何平均粒徑均隨著充電區的操作電壓增加或膠結區交流電的操作電壓增加或微粒在膠結區的停留時間增加而增加。於雙極充電電壓分別為+7.5kV、-6.6kV與停留時間4.5秒下,當交流電電壓從16kV增加到21kV,次微米微粒膠結效率從12.2%%增加到15.8%。於雙極充電電壓分別為+7.5kV、-6.6kV與交流電操作電壓21kV下,當停留時間從2.25秒增加到4.5秒時,次微米微粒膠結效率從11.2%增加到15.8%。臭氧產生量的部分,主要受到電暈放電產生之電流所影響,充電的電流在0.01mA與0.02mA時臭氧濃度分別約為 100 ppb與200 ppb。對於膠結區交流電產生的臭氧遠低於充電區直流電產生的臭氧。


Electrostatic agglomeration is a technique which can let the particle agglomeration. Particles move and collide with each other as electric field is provided. The small particles are growing into a large one and the particle number concentration is decreased when particles agglomerate. The mechanisms of the electrostatic agglomeration include: (1) Particles are charged by two different polar corona chargers. (2) These particles oscillate in an alternating electric field, and then particle collide with each other. However, the agglomeration efficiency of submicron particle is not good as well. Therefore, an electrostatic agglomeration system was set up in this study. The objective of this research was to find out effect of operating parameters on submicron particle agglomeration by electrostatic agglomeration system.
The experimental results indicated that count median diameter, count mean diameter and geometric mean diameter were increased as increasing bipolar charging voltage, alternating voltage, and agglomeration residence time. The submicron particle agglomeration efficiency was 12.2% and 15.8% for 16 and 21kV of alternating voltage, respectively, when residence time was 4.5 seconds and bipolar charging voltage was 7.5kV and -6.6kV, respectively. The submicron particle agglomeration efficiency was 11.2% and 15.8% for 2.25 and 4.5 seconds of residence time, respectively, when alternating voltage was 21kV and bipolar charging voltage was 7.5kV and -6.6kV, respectively.
The ozone concentration was 100 ppb and 200 ppb as direct current of charger was 0.01mA and 0.02mA, respectively. The results indicated the formation of ozone concentration was caused by the current of charger. The yield of ozone concentration under alternating current of agglomeration was far less than direct current of charger.


目錄

摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究架構與流程 2
第二章 文獻文顧 4
2.1 靜電膠結型式 4
2.2 充電機制 5
2.2.1 電暈放電 5
2.2.2 微粒帶電機制 9
2.3 靜電膠結機制 13
2.4 微粒清理 17
2.5 臭氧的產生 18
第三章 研究設備與方法 21
3.1 帶電微粒產生系統 23
3.2 雙極微粒充電系統 23
3.3 靜電膠結系統 24
3.4 微粒量測系統 27
3.5 實驗儀器 30
3.5.1 靜電膠結系統儀器 30
3.5.2 量測儀器 31
第四章 結果與討論 33
4.1 充電區電流與電壓關係 33
4.2 微粒帶電量 35
4.2.1 理論帶電量 35
4.2.2 實際帶電量 37
4.3 靜電膠結之影響 43
4.3.1 不同交流電壓之影響 43
4.3.2 不同直流電壓之影響 59
4.3.3 不同膠結區停留時間之影響 61
4.4 靜電膠結系統臭氧產生 63
第五章 結論與建議 65
5.1 結論 65
5.2 建議 66
參考文獻 67


B., Hudda, N., Ning, Z., Kim, Kim, YJ and Sioutas, C. (2009). A Novel Bipolar Charger for Submicron Aerosol Particles Using Carbon Fiber Ionizers. J. Aerosol Science. 40: 285-296.
Benson, S. W. and Axworthy, A. E. (1965). Reconsideration of the Rate Constants from the Thermal Decomposition of Ozone. J. Chem. Phys. 42:2614-2615.
Boelter, K. J. and Davidson, J. H. (1997). Ozone Generation by Indoor, Electrostatic Air Cleaners. Aerosol Science and Technology 27:689 - 708.
Castle, G. S. P., Inculet, I. I. and Burgess, K. I. (1969). Ozone Generation in Positive Corona Electrostatic Precipitators. Industry and General Applications, IEEE Transactions on IGA-5:489-496.
Han, B., Hudda, N., Ning, Z., Kim, H.-J., Kim, Y.-J. and Sioutas, C. (2009a). A novel bipolar charger for submicron aerosol particles using carbon fiber ionizers. Journal of Aerosol Science 40:285-294.
Han, B., Hudda, N., Ning, Z., Kim, Y.-J. and Sioutas, C. (2009b). Efficient Collection of Atmospheric Aerosols with a Particle Concentrator-Electrostatic Precipitator Sampler. Aerosol Science and Technology 43:757 - 766.
Hautanen, J., Kilpelainen, M., Kauppinen, E. I., Jokiniemi, J. and Lehtinen, K. (1995). Electrical Agglomeration of Aerosol Particles in an Alternating Electric Field. Aerosol Science and Technology 22:181 - 189.
Hinds W. C. (1999). Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. John-Wiley and Sons, New York.
Huang, S. H. and Chen, C. C. (2001). Filtration Characteristics of a Miniature Electrostatic Precipitator. Aerosol Science and Technology 35:792 - 804.
Huang, S. H. and Chen, C. C. (2002). Ultrafine Aerosol Penetration through Electrostatic Precipitators. Environmental Science &; Technology 36:4625-4632.
Huang, S. H. and Chen, C. C. (2003). Loading Characteristics of a Miniature Wire-Plate Electrostatic Precipitator. Aerosol Science and Technology 37:109 - 121.
J&;#281;drusik, M., Gajewski, J. B. and &;#346;wierczok, A. J. (2001). Effect of the particle diameter and corona electrode geometry on the particle migration velocity in electrostatic precipitators. Journal of Electrostatics 51-52:245-251.
J&;#281;drusik, M., &;#346;wierczok, A. and Modzel, P. (1998). Migration velocity and visualization of the trajectory of fly ash particles inside an electrostatic precipitator. Journal of Electrostatics 44:77-84.
Jedrusik, M., Swierczok, A., Teisseyre, R. (2003). Experimental study of fly ash precipitation in a model electrostatic precipitator with discharge electrodes of different design. Powder Technology 135–136(0): 295-301.
Jaworek, A., Krupa, A. and Czech, T. (2007). Modern electrostatic devices and methods for exhaust gas cleaning: A brief review. Journal of Electrostatics 65:133-155.
Ji, J.-H., Hwang, J., Bae, G.-N. and Kim, Y.-G. (2004). Particle charging and agglomeration in DC and AC electric fields. Journal of Electrostatics 61:57-68.
Kim, S. H. and K. W. Lee (1999). Experimental study of electrostatic precipitator performance and comparison with existing theoretical prediction models. Journal of Electrostatics 48(1): 3-25.
Kim, Y. J., Jeong, S. H., Hong, W. S., Ha, B. K., Cho, S. S., Ham, B. H. (1998). Effect of energization on the particle collection in a bench-scale cylindrical electrostatic precipitator. Journal of Aerosol Science 29, Supplement 2(0): S925-S926.
Koizumi, Y., Kawamura, M., Tochikubo, F. and Watanabe, T. (2000). Estimation of the agglomeration coefficient of bipolar-charged aerosol particles. Journal of Electrostatics 48:93-101.
Koizumi, Y., Tochikubo, F., Watanabe, T. and Hautanen, J. (1995). Bipolar-charged submicron particle agglomeration. Journal of Electrostatics 35:55-60.
Kuroda, Y., Kawada, Y., Takahashi, T., Ehara, Y., Ito, T., Zukeran, A., Kono, Y. and Yasumoto, K. (2003). Effect of electrode shape on discharge current and performance with barrier discharge type electrostatic precipitator. Journal of Electrostatics 57:407-415.
Lackowski, M. (2001). Unipolar charging of aerosol particles in alternating electric field. Journal of Electrostatics 51-52:225-231.
Laitinen, A., Hautanen, J., Keskinen, J., Kauppinen, E., Jokiniemi, J. and Lehtinen, K. (1996). Bipolar charged aerosol agglomeration with alternating electric field in laminar gas flow. Journal of Electrostatics 38:303-315.
Lianze, W., Xiangrong, Z. and Keqin, Z. (2005). An analytical expression for the coagulation coefficient of bipolarly charged particles by an external electric field with the effect of Coulomb force. Journal of Aerosol Science 36:1050-1055.
Lim, H. C., Yatsuzuka, K. and Asano, K. (1998). Fundamental characteristics of a two-stage electrostatic precipitator. Proc. Inst. Electrostat. Japan., Japanese, 15-152.
Lin, W. Y. and Kuo, C. W. (2007). The study of AC and DC electric field separation of miniature electrostatic precipitator. The Fifth Asian Aerosol Conference, Kaohsiung, Taiwan.
Lin L. and D. Chen (2011). Performance study of a DC-corona-based particle charger for charge conditioning. Journal of Aerosol Science 42:87–99
L. Liu, J. Guo, J. Li and L. Sheng (2000). The effect of wire heating and configuration on ozone emission in a negative ion generator, Journal of Electrostatics 48;81-91
Mohr, M., Ylatalo, S., Klippel, N., Kauppinen, E. I., Riccius, O. and Burtscher, H. (1996). Submicron Fly Ash Penetration Through Electrostatic Precipitators at Two Coal Power Plants. Aerosol Science and Technology 24:191-204.
Morawska, L., Agranovski, V., Ristovski, Z. and Jamriska, M. (2002). Effect of Face Velocity and the Nature of Aerosol on the Collection of Submicrometer Particles by Electrostatic Precipitator. Indoor Air 12:129-137.
Nashimoto, K. (1988). The Effect of Electrode materials on O3 and NOX Emissions by Corona Discharging. J. Imaging Sci. 32:205-210.
Niu, J. L., Tung, T. C. W. and Burnett, J. (2001). Quantification of dust removal and ozone emission of ionizer air-cleaners by chamber testing. Journal of Electrostatics 51-52:20-24.
Ohkubo, T., Hammasaki, S., Nomoto, Y., Chang, J. S. and Adachi, T. (1990). The Effect of Corora Wire Heating on the Downstream Ozone Concentration Profiles in an Air Cleaning Wire-Duct Electrostatic Precipitator. IEEE Trans. Ind. Apphcat. 26:542-549.
Takahashi, T., Zukeran, A., Ehara, Y., Kishida, H., Ito, T. and Takamatsu, T. (1998). Influence of gas velocity and electric field intensity on particle deposit and re-entrainment phenomena in an electrostatic precipitator. Journal of Aerosol Science 29:S481-S482.
Tan, B., Wang, L. and Zhang, X. (2007). The effect of an external DC electric field on bipolar charged aerosol agglomeration. Journal of Electrostatics 65:82-86.
Unger, L., Boulaud, D. and Borra, J. P. (2004). Unipolar field charging of particles by electrical discharge: effect of particle shape. Journal of Aerosol Science 35:965-979.
Viner, A. S., Lawless, P. A., Ensor, D. S. and Sparks, L. E. (1992). Ozone generation in DC-energized electrostatic precipitators. Industry Applications, IEEE Transactions on 28:504-512.
Watanabe, T., Tochikubo, F., Koizurni, Y., Tsuchida, T., Hautanen, J. and Kauppinen, E. I. (1995). Submicron particle agglomeration by an electrostatic agglomerator. Journal of Electrostatics 34:367-383.
Zhu, J., Zhang, X., Chen, W., Shi, Y., Yan, K. (2010). Electrostatic precipitation of fine particles with a bipolar pre-charger. Journal of Electrostatics 68(2): 174-178.
Zhuang, Y. and Biswas, P. (2001). Submicrometer Particle Formation and Control in a Bench-Scale Pulverized Coal Combustor. Energy &; Fuels 15:510-516.
Zhuang, Y., Jin Kim, Y., Gyu Lee, T. and Biswas, P. (2000). Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. Journal of Electrostatics 48:245-260.
王秋森 (1993),氣懸膠技術學,國立台灣大學醫學院出版委員會出版,第74-81頁。
郭崇文 (2005),小型靜電集塵器電場分離之研究─交流與直流電場,碩士論文,國立臺北科技大學環境規劃與管理研究所,台北。
黃盛修 (2001),小型靜電集塵器之過濾及負載特性之研究,博士論文,國立台灣大學公共衛生學院職業醫學與工業衛生研究所,台北。
經濟部工業局 (1990a),粒狀污染物控制設備之評估與選用,工業污染防治手冊。
經濟部工業局 (1990b),靜電集塵器,工業污染防治手冊。
謝靜佩 (2003),臭氧空氣清淨機對室內揮發性有機物之去除效率,碩士論文,國立台灣大學環境工程所,台北。
連振廷 (2010),膠結特性對靜電集塵器收集效率影響之研究,國立臺北科技大學環境規劃與管理研究所,碩士論文,台北。
林冠宇 (2010),一個控制細微粒及奈米微粒排放的電極線-平板型濕式靜電集塵器,國立交通大學環境工程系所,博士論文,新竹。
呂紹豪 (2013),單極離子噴射式產生器對微粒帶電特性影響之研究,國立臺北科技大學環境規劃與管理研究所,碩士論文,台北。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊