跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 20:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴承彥
研究生(外文):Lai, Chen-Yen
論文名稱:自旋量子位元與自旋環境交互作用的相消干現象--與時間相關的密度矩陣重整化群的研究
論文名稱(外文):Spin Qubit Decoherence by Spin Bath -- a Time-Dependent DMRG Study
指導教授:陳柏中陳柏中引用關係
指導教授(外文):Chen, Pochung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:50
中文關鍵詞:密度矩陣重整化群量子資訊
外文關鍵詞:density matrix renormalization groupspin decoherencetwo spin decoherencenon-Makovianquantum informationtd dmrg
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, we use the new numerical method – density matrix renormalization group – to study the decoherence of spin qubit. Because of diverging Hilbert space in quantum system, the linear growth and effective truncation make us can simulate quantum system accurately. Also, time-dependent DMRG was developed to simulate the real-time dynamics of quantum system. We use this method to study the non-equilibrium properties.
Spin decoherence induced by a spin bath has recently been the subject of interest in the field of quantum computation and spintronics. Unlike the spin-boson model, the resulting decoherence depends crucially on the nature of the spin bath and its coupling to the central spin. In this work we investigate the decoherence of a central spin which is coupled non-uniformly to a spin chain by means of the time-dependent density matrix renormalization group technique. Using this technique the coupling between the central spin and the spin chain can take any form, in contrast to the typical uniform or on-site coupling taken in the literature. Two qubit decoherence is also an interesting subject in this thesis. The distance between
qubits affect the decoherence of qubits. We have studied the resulting spin
decoherence induced by spin chains in the Ising, XY, XXZ, and Heisenberg universality classes. Connection between the decoherence the quantum phase transition of the spin chain is discussed.
An exotic interaction, which can’t be realized in semiconductor wire, exist in a system : double wire loaded by fermionic polar molecules. Different interaction can be tuned by external electric field. We study the phase diagram of this system by means of static DMRG. An interesting phase – spontaneous interwire coherence -- is found.
In this thesis, we use the new numerical method – density matrix renormalization group – to study the decoherence of spin qubit. Because of diverging Hilbert space in quantum system, the linear growth and effective truncation make us can simulate quantum system accurately. Also, time-dependent DMRG was developed to simulate the real-time dynamics of quantum system. We use this method to study the non-equilibrium properties.
Spin decoherence induced by a spin bath has recently been the subject of interest in the field of quantum computation and spintronics. Unlike the spin-boson model, the resulting decoherence depends crucially on the nature of the spin bath and its coupling to the central spin. In this work we investigate the decoherence of a central spin which is coupled non-uniformly to a spin chain by means of the time-dependent density matrix renormalization group technique. Using this technique the coupling between the central spin and the spin chain can take any form, in contrast to the typical uniform or on-site coupling taken in the literature. Two qubit decoherence is also an interesting subject in this thesis. The distance between
qubits affect the decoherence of qubits. We have studied the resulting spin
decoherence induced by spin chains in the Ising, XY, XXZ, and Heisenberg universality classes. Connection between the decoherence the quantum phase transition of the spin chain is discussed.
An exotic interaction, which can’t be realized in semiconductor wire, exist in a system : double wire loaded by fermionic polar molecules. Different interaction can be tuned by external electric field. We study the phase diagram of this system by means of static DMRG. An interesting phase – spontaneous interwire coherence -- is found.
1 Introduction 3
2 Density Matrix Renormalization Group 5
2.1 Numerical Renormalizaion Group and Density Matrix Formulation . 5
2.1.1 Standard DMRG Procedure . . . . . . . . . . . . . . . . . . 7
2.1.2 Physical Quantity Calculation in DMRG . . . . . . . . . . . 11
2.1.3 Wave Function Transformation . . . . . . . . . . . . . . . . 14
2.2 Time-Dependent DMRG . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.1 Suzuki-Trotter Formula . . . . . . . . . . . . . . . . . . . . . 17
3 Spin Qubit(s) Decoherence by Generalized Spin Bath 20
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 DMRG Procedure in Spin qubit(s) Dynamics . . . . . . . . . . . . . 22
3.4 Single Spin Decoherence . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.1 Short Time Behavior of Loschmidt echo . . . . . . . . . . . 23
3.4.2 Spin Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 Two Spins Decoherence . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Known Result in XY-bath . . . . . . . . . . . . . . . . . . . 34
3.5.2 Generalized Heisenberg Spin Bath . . . . . . . . . . . . . . . 36
4 Quantum Phase Diagram of Polar Molecules in 1D Double Wire System 38
4.1 The Model and Transformation . . . . . . . . . . . . . . . . . . . . 38
4.2 Phase Diagram and Order Parameter . . . . . . . . . . . . . . . . . 40
5 Conclusion 43
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
A Second Order Approximation of Loschmidt Echo 46
[1] K. G. Wilson, Rev. Mod. Phys. 77. 259 (2005).
[2] Steven R. White, Phys. Rev. B, 48, 10345 (1993).
[3] Steven R. White, Phys. Rev. Lett. 77. 3633 (1996).
[4] S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
[5] R. M. Noack and S. R. White. In I. Peschel, X. Wang, M. Kaulke,
and K. Hallberg (Editors), Density Matrix Renormalization: A New
Numerical Method in Physics. p.27 (Springer, 1999).
[6] Michael A. Nielsen and Isaac L. Chuang, Quantum Computation and
Quantum Information. (Cambridge, 2000)
[7] U. Schollw‥ock, Rev. Mod. Phys. 77, 259 (2005).
[8] E. Schmidt, Math. Ann. 63, 433 (1906); A. Kkert and P. L. Knight,
Am. J. Phys. 63, 415 (1995); A. Peres, Quantum Theory: Concepts
and Mathods (Kluwer Academic Publishers, Dordrecht, 1995).
[9] G. Vidal, J. I. Latorre, E. Rico and A. Kitaev, Phys. Rev. Lett. 90
227902 (2003); J. I. Latorre, E. Rico, G. Vidal quant-ph/0304098.
[10] S. R. White and D. Scalapino, Phys. Rev. B 55 14701 (1997).
[11] S. R. White and D. Scalapino, Phys. Rev. B 55 6504 (1997).
[12] S. R. White and D. Scalapino, Phys. Rev. B 57 3301 (1998).
[13] S. R. White and D. Scalapino, Phys. Rev. Lett. 80 1272 (1998); ibid.
Phys. Rev. B 61 6320 (2000).
[14] S. R. White and I. Affleck, Phys. Rev. B 64 024411 (2001).
[15] M. A. Cazallila and J. B. Marston, Phys. Rev. Lett. 88 256403 (2002).
[16] G. Vidal, Phys. Rev. Lett., 91, 147902 (2003) and Phys. Rev. Lett.,
93, 040502 (2004).
[17] Steven R. White and Adrian E. Feiguin, Phys. Rev. Lett., 93,
076401(2004), also A. J. Dalet etc al., J. Stat. Mech. 04 005 (2004).
[18] Adrian E. Feiguin and Steven R. White, Phys. Rev. B 72, 020404(R)
(2005).
[19] Peter Schmitteckert, Phys. Rev. B 70 121302 (2004).
[20] K. A. Al-Hassanieh, A. E. Feiguin, J. A. Riera, C. A. B‥usser, and E.
Dagotto, Phys. Rev. B 73, 195304 (2006).
[21] Andreas Friedrich, Time-dependent Properties of one-dimensioal Spin-
Systems: a DMRG-Study, Ph.D thesis.
[22] Christian Dziurzik, Competition of magnetic and superconducting ordering
in one-dimensional generalized Hubbard models, Ph.D thesis.
[23] D. D. Awschalom, D. Loss, and N. Samarth, Semiconductor Spintronics
and Quantum Computation (Springer, Berlin, 2002).
[24] R. Fazio, Focus on Solid State Quantum Information, New J. of
Physics 7 (2005).
[25] W. H. Zurek, Phys. Rev. D 26, 1862 (1982).
[26] F. M. Cucchietti, J. P. Paz, and W. H. Zurek, Phys. Rev. A 72, 052113
(2005).
[27] S. paganelli, F. de Pasquale, amd S. M. Giampaolo, Phys. Rev. A 66,
052317 (2002).
[28] H. T. Quan, Z. Song, X. F. Liu, P. Zanardi, and C. P. Sun, Phys. Rev.
Lett. 96. 140604 (2006).
[29] Y. Y. Tian, Pochoung Chen, D. W. Wang, unpublished.
[30] A. Peres, Phys. Rev. A 30, 1610 (1984).
[31] Davide Rossini, Tommaso Calarco, Vittorio Giovannetti, Simone Montangero,
and Rosario Fazio, Phys. Rev. A 75, 032333 (2007).
[32] Sebastian Eggert and Ian Affleck, Phys. Rev. B, 46, 10866 (1992).
[33] A. Furusaki and T. Hikihara, Phys. Rev. B, 58, 5529 (1998).
[34] Wei-Chao Shen and Chung-Yu Mou, unpublished.
[35] Chi-Ming Chang, Daw-Wei Wang, unpublished.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top