跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 19:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐宜伶
研究生(外文):Yi-Ling Shu
論文名稱:1-芳香吡咯[3,2-c]喹啉衍生物作為潛能抗癌試劑
論文名稱(外文):1-Arylpyrrolo[3,2-c]quinoline Derivatives as Potential Anticancer Agents
指導教授:陳香惠
學位類別:碩士
校院名稱:靜宜大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:157
中文關鍵詞:喹啉衍生物抗癌試劑CA-4微管
外文關鍵詞:anticancer agentsCombretastatin A-4quinoline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主旨為設計與合成一系列1-芳香基取代吡咯[3,2-c]喹啉衍生物作為抗癌試劑,並對其做體外生物活性評估。Combretastatin A-4 (CA-4)為一有效的抗微管聚合抑制劑,CA-4結構特徵為在雙環上接有甲氧基之二芳香環順式乙烯結構。已有許多文獻報導指出喹啉衍生物在各方面皆擁有不錯的生物活性,因此本實驗室之前就曾以喹啉為骨架,設計1-芳香基取代吡咯[3,2-c]喹啉衍生物,迫使兩芳香環為順式結構,發現此系列化合物具有不錯的抗癌細胞活性。本論文進一步改變在喹啉環上的取代基,同樣以合成1-芳香基取代吡咯[3,2-c]喹啉衍生物為主,分別以4-Cl、4-Me及3,4,5-OMe取代之苯胺與2-acetylbutyrolactone進行縮合反應後,接著氯化得4-chloro-3-(2-chloroethyl)衍生物 2a-c,再與具不同取代基之苯胺進行取代及環化反應得到2,3-dihydropyrrolo[3,2-c]quinoline衍生物3及4,利用鈀金屬催化劑脫氫,分別得到5和6系列1-芳香基取代吡咯[3,2-c]喹啉衍生物。合成出之標的化合物均採SRB篩選方式,分別對胃癌細胞株AGS、肺癌細胞株A549和大腸直腸癌細胞株HT-29進行體外細胞毒性測試,發現未平面化之2,3-dihydropyrrolo[3,2-c]quinoline衍生物3a-c在苯胺之甲氧基在抑制活性上扮演著很重要的角色。更重要的,苯環上有甲氧基取代之5和6系列pyrrolo[3,2-c]quinoline衍生物,其抑制活性也明顯比未平面化前的3系列好,因此推測在結構活性關係(SAR)中,平面芳香結構為一必要的條件。
This thesis is aimed at design, synthesis, and evaluation of anticancer activity of 1-arylpyrrolo[3,2-c]quinoline derivatives. Combrestastatin A4 (CA-4) is a tubulin polymerization inhibitor, and its structural features possess two aryl rings containing methoxy groups in the cis form. Quinoline derivatives possess various biological activities in many aspects. It was used for the design of 1-arylpyrrolo[3,2-c]quinolines to force two aryl rings in cis form. In this study, we introduced substituents on the quinoline of 1-arylpyrrolo[3,2-c]quinoline derivatives. The synthesis was initiated from the condensation of aniline (4-Cl, 4-Me, and 3,4,5-OMe) and 2-acetylbutyrolactone. After chlorination, 4-chloro-3-(2-chloroethyl) derivatives 2a-c were substituted and cyclized by anilines to afford 2,3-dihydropyrrolo[3,2-c]quinolines 3 and 4. Aromatization of 3 and 4 was accomplished by dehydrogenation over palladium to afford target compounds 6 and 7. All synthesized compounds were subjected to SRB assay for the in vitro cytotoxicity against stomach cancer cell line AGS, lung cancer cell lines A549, and colon cancer cell line HT-293. The OMe on the 1-phenyl group played an important role in 3a-c. More importantly, pyrrolo[3,2-c]quinolines 5 and 6 conatining the methoxy substituent on the phenyl group possessed inhibitory activity much better than the corresponding 3 series. For the structure-activity relationship (SAR), the amomatic planar structure is assumed essential to the inhibitory activity.
第一章 緒論 1
第二章 實驗設計 17
第三章 結果與討論 19
3.1 標的化合物的合成 19
3.1.1 4-Chloro-3-(2-chloroethyl)-2-methylquinolines (2a-c) 19
3.1.2 1-Aryl-4-methyl-2,3-dihydropyrrolo[3,2-c]quinolines 3及4 20
3.1.3 1-Aryl-4-methyl-pyrrolo[3,2-c]quinoline衍生物5及6 24
3.1.4 8-Chloro-4-methyl-1-(pyridin-2-yl)-pyrrolo[3,2-c]quinoline (9) 25
3.2 體外生物活性測試 32
第四章 結論 37
第五章 實驗部分 38
5.1 檢驗方法與實驗儀器 38
5.2 試藥、溶劑 38
5.3 合成步驟 39
第六章 參考資料 68
第七章 圖譜資料 75
圖目錄
圖一、九十八年度台灣地區十大死亡原因比例 2
圖二、九十八年度台灣地區癌症死亡百分比 2
圖三、惡性腫瘤治療方法及化學治療之副作用 4
圖四、細胞週期 5
圖五、有絲分裂概況 7
圖六、微管結構及平衡狀態 8
圖七、微管聚合試劑 10
圖八、紫杉醇與β-tubulin鍵結情形 10
圖九、秋水仙素與α-tubulin鍵結情形 12
圖十、抗微管聚合試劑 13
圖十一、CA-4相關之前導藥物 14
圖十二、仿CA-4構型之雜環衍生物 15
圖十三、CA-4衍生物構型設計概念 17
圖十四、1-Arylpyrrolo[3,2-c]quinoline標的化合物設計概念 18
圖十五、化合物3f salt於CDCl3中的1H NMR圖譜 22
圖十六、D2O加入化合物3f salt於CDCl3中的1H NMR圖譜 23
圖十七、化合物7於DMSO-d6中的1H NMR圖譜 28
圖十八、化合物8於CDCl3中的1H NMR圖譜 29
圖十九、利用螢光光譜來鑑定化合物7、8及9螢光強度 30
表目錄
表一、化合物7與8物理、化學性質的不同 31
表二、1-Aryl-8-chloro-4-methyl-2,3-dihydropyrrolo[3,2-c]quinoline衍生物3a-j之體外生物活性 32
表三、1-Aryl-4-methylpyrrolo[3,2-c]quinoline衍生物5、6及9之體外生物活性 34
式目錄
式一、4-Chloro-3-(2-chloroethyl)-2-methylquinolines (2a-c)之合成 19
式二、1-Aryl-4-methyl-2,3-dihydropyrrolo[3,2-c]quinoline衍生物3及4之合成 20
式三、1-Aryl-4-methyl-pyrrolo[3,2-c]quinolines衍生物5及6之合成 24
式四、8-Chloro-4-methyl-1-(pyridin-2-yl)-pyrrolo[3,2-c]quinoline (9)之合成 25
Information received from the Internet Homepages of the Department of Health, Taiwan, R. O. C. (http://www.doh.gov.tw)
Hartwell, L. H.; Weinert, T. A. Checkpoints: Controls that Ensure the Order of Cell Cycle Events. Science 1989, 246, 629-624.
Zhang, P. The Cell Cycle and Development: Redundant Roles of Cell Cycle Regulator. Curr. Opin. Cell Biol. 1999, 11, 655-662.
Klime-Smith, S. L; Walczak, C. E. Mitotic Spindle Assembly and Chromosome Segregation: Refocusing on Microtubule Dynamics. Mol. Cell 2004, 15, 317-327.
Pinney, K. G.; Mejia, M. P.; Villalobos, V. M.; Rosenquist, B. E.; Pettit, G. R.; Verdier-Pinard, P.; Hamel, E. Synthesis and Biological Evaluation of Aryl Azide Derivatives of Combretastatin A-4 as Molecular Probes for Tubulin. Bioorg. Med. Chem. 2000, 8, 2417-2425.
Jordan, M. A.; Wilson, L. Microtubules and Actin Filaments: Dynamic Targets for Cancer Chemotherapy. Curr. Opin. Cell Biol. 1998, 10, 123-130.
Attard, G.; Greystoke, A.; Kaye, S.; Bono, J. D. Upate on Tubulin-Binding Agents. Pathol. Biol. 2006, 54, 72-84.
Wani, M. C.; Taylor, H. L.; Wall, M. E.; Coggon, P.; McPhail, A. T. Plant Antitumor Agents. VI. The Isolation and Structure of Taxol, a Novel Antileukemic and Antitumor Agent from Taxus Brevifolia. J. Am. Chem. Soc. 1971, 93, 2325-2327.
Maccari, L.; Fabrizio, M.; Corelli, F; Botta, M. 3D QSAR Studuies for The β-Tubulin Binding Site of Microtubule Stabilizing Anticancer Agents (MSAAS). A Pseudoreceptor Mode For Taxanes Based on The Experimental Structure of Tubulin. Il. Farmaco. 2003, 58, 659-668.
Rice, A.; Liu, Y.; Michaelis, M. L.; Himes, R. H.; Georg, G. I.; Audus, K. L. Chemical Modification of Paclitaxel (Taxol) Reduces P-glycoprotein Interactions and Increases Permeation Across the Blood−Brain Barrier in Vitro and in Situ. J. Med. Chem. 2005, 48, 832-838.
Gelmon, K. The Taxoids: Paclitaxel and Docetaxel. Lancet 1994, 344, 1267-1272.
Gerth, K.; Bedorf, N.; Hfle, G.; Irschik, H.; Reichenbach, H. Epothilones A and B: Antifungal and Cytotoxic Compound form Sorangium Cellulosum (myxobacterium). Production, Physicochemical and Biological Properties. J. Antibiot. 1996, 49, 560-563.
Haar, E.; Kowalski, R. J.; Hamel, E.; Lin, C. M.; Longley, R. E.; Gunasekera, S. P.; Rosenkranz, H. S.; Day, B. W. Discodermolide, A Cytotoxic Marine Agent That Stabilizes Microtubules More Potently Than Taxol. Biochemistry 1996, 35, 243-250.
Clark, E. A.; Hills, P. M.; Davidson, B. S.; Wender, P. A.; Mooberry, S. L. Laulimalide and Synthetic Laulimalide Analogues Are Synergistic with Paclitaxel and 2-Methoxyestradiol. Mol. Pharm. 2006, 3, 457-467.
Mcdaid, H. M.; Bhattacharya, S. K.; Chen, X. T.; He. L.; Shen, H. J.; Gutteridge, C. E.; Horwitz, S. B.; Danishefsky, S. J. Structure-Activity Profiles of Eleutherobin Analogs and Their Cross-Resistance in Taxol-Resistant Cell Lines. Cancer Chemother. Pharmacol. 1998, 44, 131-137.
Hamel, E.; Sackett, D. L.; Vourloumis, D.; Nicolaou, K. C. The Coral-Derived Natural Products Eleutherobin and Sarcodictyins A and B: Effects on the Assembly of Purified Tubulin with and without Microtubule-Associated Proteins and Binding at the Polymer Taxoid Site. Biochemistry 1999, 38, 5490-5498.
Gabriella, D. M. New Arylthioindoles: Potent Inhibitors of Tubulin Polymerization. 2. Structure-Activity Relationships and Molecular Modeling Studies. J. Med. Chem. 2006, 49, 947-954.
Himes, R. H. Interactions of the Catharanthus (Vinca) Alkaloids with Tubulin and Microtubule. Pharmacol. Ther. 1991, 51, 257-267.
Ho, Y. S.; Duh, J. S.; Wang, Y. J.; Liang, Y. C.; Lin, C. H.; Jeng, J. H.; Tseng, C. J.; Yu, C. F.; Chen, R. J.; Lin, J. K. Griseofulvin Potentiates Antitumorigenesis Effects of Nocodazole Through Induction of Apoptosis and G2/M Cell Cycle Arrest in Human Colorectal Cancer Cells. Int. J. Cancer 2001, 91, 393-401.
Magedov, I. V.; Manpadi, M.; Slambrouck, S. V.; Steelant, W. A.; Rozhkova, E.; Przheval’skii, N. M.; Rogelj, S.; Kornienko, A. Discovery and Investigation of Antiproliferative and Apoptosis- Inducing Properties of New Heterocyclic Podophyllotoxin Analogues Accessible by a One-Step Multicomponent Synthesis. J. Med. Chem. 2007, 50, 5183-5192.
Lin, C. M.; Singh, S. B.; Chu, P. S.; Dempcy, R. O.; Schmidt, J. M.; Pettit, G. R.; Hamel, E. Interactions of Tubulin with Potent Natural and Synthetic Analogues of the Antimitotic Agent Combretastatin: A Structure-Activity Study. Mol. Pharmacol. 1988, 34, 200-208.
Chaplin, D. J.; Hill, S. A.; The Development of Combretastatin A-4 Phosphate as a Vascular Targeting Agent. Int. J. Radit. Oncol. Biol. Phys. 2002, 54, 1491-1496.
Ohsumi, K.; Nakagawa, R.; Fukuda, Y.; Hatanaka, T.; Morinaga, Y.; Nihei, Y.; Ohishi, K.; Suga, Y.; Akiyama, Y.; Tsuji, T. Novel Combretastatin Analogues Effective Against Murine Solid Tumors: Design and Structure-Activity Relationships. J. Med. Chem. 1998, 41, 3022-3032.
Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.; Hamel, E. Synthesis and Evaluation of Stilbene and Dihydrostilbene Derivatives as Potential Anticancer Agents That Inhibit Tubulin Polymerization. J. Med. Chem. 1991, 34, 2579-2588.
Alloatti, D.; Giannini, G.; Cabri, W.; Lustrati, I.; Marzi, M.; Ciacci, A.; Gallo, G.; Tinti, M. O.; Marcellini, M.; Riccioni, T.; Guglielmi, M. B.; Carminati, P.; Pisano, C. Synthesis and Biological Activity of Fluorinated Combretastatin Analogues. J. Med. Chem. 2008, 51, 2708-2721.
Pettit, G. R.; Toki, B.; Herald, D. L.; Verdier-Pinard, P.; Boyd, M. R. Antineoplastic Agents. 379. Synthesis of Phenstation Phosphate. J. Med. Chem. 1998, 41, 1688-1695.
Flynn, B. L.; Hamel, E.; Jung, M. K. One-Pot Synthesis of Benzo[b]furan and Indole Inhibitors of Tubulin. J. Med. Chem. 2002, 45, 2670-2673.
Liu, T.; Dong, X.; Xue, N.;Wu, R.; He, Q.;Yang, B.; Hu, Y. Synthesis and Biological Evaluation of 3,4-Diaryl-5-aminoisoxazole Derivatives. Bioorg. Med. Chem. 2009, 17, 6279-6285.。
Sun, C. M.; Lin, L. G.; Yu, H. J.; Cheng, C. Y.; Tsai, Y. C.; Chu, C. W.; Din, Y. H.; Chau, Y. P.; Don, M. J. Synthesis and Cytotoxic Activities of 4,5-Diarylisoxazoles. Bioorg. Med. Chem. Lett. 2007, 17, 1078-1081.
Shirai, R.; Okabe, T.; Iwasaki, S. Synthesis of Conformationary Restricted Combretastatins. Heterocycles 1997, 46, 145-148.
Nam, N. H.; Kim, Y.; You, Y. J.; Hong, D. H.; Kim, H. M. Combretoxazolones:Synthesis, Cytotoxicity and Antitumor Activity. Bioorg. Med. Chem. Lett. 2001, 11, 3073-3076.
Zhang, Q.; Peng, Y.; Wang, X. I.; Keenan, S. M.; Arora, S.; Welsh, W. J. Highly Potent Triazole-Based Tubulin Polymerization Inhibitors. J. Med. Chem. 2007, 50, 749-754.
Odlo, K.; Hentzen, J.; Chabert, J. F.; Ducki, S.; Sylte, I.; Skrede, M.; Florenes, V. A.; Hansen, T. V. 1,5-Disubstituted 1,2,3-Triazoles as Cis-restricted Analogues of Combretastatin A-4: Synthesis, Molecular Modeling and Evaluation as Cytotoxic Agents and Inhibitors of Tubulin. Bioorg. Med. Chem. 2008, 16, 4829-4838.
Wang, L.; Woods, K. W.; Li, Q.; Barr, K. J.; McCroskey, R. W.; Hannick, S. M.; Gherke, L.; Credo, R. B.; Hui, Y. H.; Marsh, K.; Warner, R.; Lee, J. Y.; Zielinski-Mozng, N.; Frost, D.; Rosenberg, S. H.; Sham, H. L. Potent, Orally Active Heterocycle-Based Combretastatin A-4 Analogues: Synthesis, Structure-Activity Relationship, Pharmacokinetics, and In Vivo Antitumor Activity Evaluation. J. Med. Chem. 2002, 45, 1697-1711.
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y. Synthesis and Antitumor Activity of Cis-Restricted Combretastatins: 5-Membered Heterocyclic Analogues. Bioorg. Med. Chem. Lett. 1998, 8, 3153-3158.
吳澄迦,碩士論文,靜宜大學應用化學研究所 (2006)。
Nien, C. Y.; Chen. Y. C.; Kuo, C. C.; Hsieh H. P.; Chang, C. Y.; Wu, J. S.; Wu, S. Y.; Liou, J. P.; Chang, J. Y. 5-Amino-2-Aroylquinolines as Highly Potene Tubulin Polymerization Inhibitors. J. Med. Chem. 2010, 53, 2309-2313.
Ferlin, M. G.; Chiarelotto, G.; Gasparotto, V.; Via, L. D.; Pezzi, V.; Barzon, L.; Palu, G.; Castagliuolo, I. Synthesis and in Vitro and in Vivo Antitumor Activity of 2-Phenylpyrroloquinoline-4-ones. J. Med. Chem. 2005, 48, 3417-3427.
黃皓倫,碩士論文,靜宜大學應用化學研究所 (2008)。
Badaweyl, E. S.; Kappe, T. Potential Antineoplastics. Synthesis and Cytotoxicity of Certain 4-Chloro-3-(2-chloroethyl)-2-methylquinolines and Related Derivatives. Eur. J. Med. Chem. 1997, 32, 815-822.
Brown, T. H.; Ife, R. J.; Keeling, D. J.; Laing, S. M.; Leach, C. A.; Parsons, M. E.; Price, C. A.; Reavill, D. R.; Wiggall, K. J. Reversible Inhibitors of the Gastric (H+/K+)-ATPase. 1. l-Aryl-4-methyl- pyrrolo[3,2-c]quinolines as Conformationally Restrained Analogues of 4-(Ary1amino)quinolines. J. Med. Chem. 1990, 33, 527-533.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top