跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴崇倫
研究生(外文):Chung-Lun Tai
論文名稱:具雙頻操作的T型單層微帶天線
論文名稱(外文):T-Shape Microstrip Antenna for Dual-Band Operation
指導教授:謝東宏謝東宏引用關係
指導教授(外文):Tung-Hung Hsieh
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:77
中文關鍵詞:雙頻操作微帶式天線電場扭曲T型
外文關鍵詞:Dual-bandElectric-field DistortionMicrostrip AntennaT-shape
相關次數:
  • 被引用被引用:9
  • 點閱點閱:1179
  • 評分評分:
  • 下載下載:170
  • 收藏至我的研究室書目清單書目收藏:0
為滿足通訊產品多元化以及易於積體電路整合之需求,本論文利用電場扭曲的概念而設計出有雙頻操作以及簡單共平面結構的T型微帶天線。此設計理念是對傳統矩型微帶天線加以切割所成,所形成的兩不同共振腔體因而可產生分歧的高低兩模態。在適當的尺寸下,此二模態皆具有良好的單波束輻射,而且輸入阻抗也易於匹配。依據結構參數探討之結果,在輻射場型可接受的範圍內,T型天線之切割程度以及外型尺寸的改變都可用來調整共振頻率之間距以及輸入阻抗的大小。而非對稱之T型結構天線雖已失去雙頻操作之功能,不過研究所得之數據不只有助於更完整地掌握天線特性,也可提供往後天線設計之參考。
本論文是以共振腔理論的方法將T型天線分成兩矩型共振腔,再以處理傳統矩型微帶天線的分析觀念搭配Moment Method的方法而有效的求得天線各重要參數,此具有物理意義的分析方法較易於掌握天線內部的運作情況以及天線相關特性。而分析中所遇之數值以及基底係數之收斂性的問題可經探討後公式修正而解決,因而模擬與實驗之數據更證實理論分析之正確性。
本論文所提的T型天線之設計理念是由天線外型的切割而達到雙頻的功能,若天線的切割數量增加,多頻操作的可能性可使此設計理念更具應用的價值。若為了天線尺寸之縮小化,此設計理念應可套用至圓型結構上,則縮小化之雙頻天線是可期的。又本論文用來分析T型天線的方法及流程簡單直接,因而只要適當地切割,相同作法應可應用至這些天線結構上。
For the demands of multiple functions for communication and integration with circuits, this thesis uses concept of electric-field distortion to design a T-shape microstrip antenna with simple coplanar structure for dual-band operation. The design concept is to cut the shape of a conventional microstrip antenna, and higher and lower modes are excited within two different resonant cavities. With specific dimensions of antenna, two modes have well radiation patterns, and their impedance is easy to match. According to the result of study on structure parameters, the cutting extension and variation of shape can be used to adjust separation of resonant frequency and input impedance, while radiation patterns are acceptable. Meanwhile, based on the study of asymmetric T-shape structure, the dual-band ability of antenna vanishes. However, research results can not only offer more contribution on characteristic investigation of antenna but also provide information for future design.
This thesis uses the theoretic cavity model to divide a T-shape antenna into two rectangular cavities first. Then basic analysis concept and moment method are used to obtain parameters of antenna characteristic, the physical-intuitive analysis is easier to understand antenna mechanism and related characteristics. Moreover, the numerical problem and convergence of basis coefficient can be solved by formula modification after investigation, therefore simulation and experiments can prove the validity of theoretical analysis.
The proposed design concept of T-shape antenna with dual-band operation in this thesis is based on the shape cutting, the possibility of multi-band operation makes design concept more valuable if cutting number increases. This design concept may be applied to circular structure for size reduction, and then a compact and dual-band antenna can be expected. The analysis method here in this thesis is easy and straightforward, thus it should be eligible to other antennas provided that division of antenna shape is appropriate.
中文摘要i
英文摘要ii
致謝iii
目錄iv
圖目錄v
第一章 緒論1
1-1 歷史背景與研究動機1
1-2 研究與分析方法2
1-3 論文架構3
第二章 傳統矩型微帶式天線5
2-1 共振頻率與電場分佈概念之建立5
2-2 磁流與輻射場型之計算7
2-3 輸入阻抗之計算8
2-4 結論10
第三章 具雙頻操作的T型單層微帶天線21
3-1 T型微帶式天線之電場推導21
3-2 T型微帶式天線其他參數之推導25
3-3 T型微帶天線特性之探討28
3-4 理論分析中的數值問題與討論30
3-5 結論31
第四章 結構參數改變對T型微帶天線特性之影響47
4-1 切割程度之影響47
4-2 外型尺寸之影響48
4-3 不對稱之T型結構之探討49
4-4 結論50
第五章 總結與討論66
參考文獻68
圖目錄
圖1.1:T型微帶天線:(a)上視圖,(b)前視圖4
圖2.1 單層微帶天線結構:(a)結構立體圖,(b)結構前視圖。11
圖2.2 為圖2.1微帶天線之共振腔模型示意圖。12
圖2.3 對圖2.1微帶天線,不同模態之電場示意圖。13
圖2.4 對圖2.1微帶天線,由理論所得的不同模態之共振頻率分佈圖。14
圖2.5 對圖2.1微帶天線,不同模態之磁流分佈示意圖。15
圖2.6 對圖2.1矩型微帶天線,由理論與模擬所得的輻射場型。16
圖2.7 對圖2.1矩型微帶天線,由理論、模擬與實驗所得之TM10的S11數據。17
圖2.8 對圖2.1之矩型微帶天線,由理論、模擬與實驗所得之TM10的阻抗分佈圖:(a)實部阻抗,(b)虛部阻抗。18
圖2.9 對圖2.1矩型微帶天線,由理論、模擬與實驗所得之TM10的阻抗分佈圖。19
圖2.10 對圖2.1矩型微帶天線,由理論與模擬所得之TM10的實部組抗與Loss tangent之關係圖。20
圖3.1 為圖1.1之T型微帶天線共振腔。32
圖3.2 為圖1.1之T型微帶天線分區示意圖:(a)上視圖,(b)前視圖。33
圖3.3 為圖1.1之 T型微帶天線的磁流分佈圖。34
圖3.4 對圖1.1之T型微帶天線,由理論、模擬以及實驗所得的S11數據:(a)低頻模態,(b)高頻模態。。35
圖3.5 對圖1.1之T型微帶天線,由理論所得的共振頻率與基底數之關係圖:(a)低頻模態,(b)高頻模態。36
圖3.6 對圖1.1之T型微帶天線,由理論所得的在Gap區上之切線磁場分佈圖:(a)低頻模態,(b)高頻模態。其中基底數為3,諧波數與基底數的比值為50。37
圖3.7 對圖1.1之T型微帶天線,由理論所得的在Gap區上之切線磁場分佈圖:(a)低頻模態,(b)高頻模態。其中基底數p=13,諧波數與基底數的比值為50。38
圖3.8 對圖1.1之T型微帶天線,位於y=c+w/2的橫剖面上,由理論與模擬所得電場分佈圖:(a)低頻模態,(b)高頻模態。39
圖3.9 對圖1.1之T型微帶天線,位於y=c+d+w/2的橫剖面上,由理論與模擬所得的電場分佈圖:(a)低頻模態,(b)高頻模態。40
圖3.10 對圖1.1之T型微帶天線,位於x=-b處的縱剖面上,由模擬所得的電場分佈圖:(a)低頻模態,(b)高頻模態。41
圖3.11 對圖1.1之T型微帶天線,依據不同剖面之電場分佈所得的磁流分佈圖:(a)低頻模態,(b)高頻模態。42
圖3.12 對圖1.1之T型微帶天線,由理論與模擬所得的低頻模態輻射場型。43
圖3.13 對圖1.1之T型微帶天線,由理論、模擬所得的高頻模態輻射場型。44
圖3.14 對圖1.1之T型微帶天線,理論、模擬與實驗經頻率修正後所得的低頻模態之阻抗分佈圖:(a)實部阻抗,(b)虛部阻抗。45
圖3.15 對圖1.1之T型微帶天線,理論、模擬與實驗經頻率修正後所得的高頻模態之阻抗分佈圖:(a)實部阻抗,(b)虛部阻抗。46
圖4.1 對圖1.1之T型微帶天線,由理論以及模擬所得的共振頻率與b/(b+l)之關係圖。51
圖4.2 對圖1.1之T型微帶天線,由理論以及模擬所得的Co-pol.與X-pol.峰值之差距與b/(b+l)的關係圖。52
圖4.3 對圖1.1之T型微帶天線,由理論以及模擬所得的共振頻率與w/(c+w+d)之關係圖。53
圖4.4 對圖1.1之T型微帶天線,由理論以及模擬所得的Co-pol.與X-pol.峰值之差距與w/(c+w+d)的關係圖。54
圖4.5 對圖1.1之T型微帶天線,由理論以及模擬所得的實部阻抗與w/(c+w+d)的關係圖。55
圖4.6 對圖1.1之T型微帶天線,由模擬所得的共振頻率與(c+w+d)/(b+l)的關係圖。56
圖4.7 對圖1.1之T型微帶天線,由擬所得的輸入阻抗與(c+w+d)/(b+l)的關係圖。57
圖4.8 對圖1.1之T型微帶天線,由擬所得的Co-pol.與X-pol.峰值之差距與(c+w+d)/(b+l)的關係圖。58
圖4.9 對圖1.1之T型微帶天線,由模擬所得的共振頻率與l/b的關係圖。59
圖4.10 對圖1.1之T型微帶天線,在 平面上由模擬所得的Co-pol.與X-pol.峰值之差距與l/b的關係圖。60
圖4.11 對圖1.1之T型微帶天線,在不同c+w+d長度狀況下,共振頻率與b/(b+l)之關係圖:(a)低頻模態,(b)高頻模態。61
圖4.12 對圖1.1之T型微帶天線,在不同c+w+d長度狀況下,由模擬所得的 平面上的Co-pol.與X-pol.峰值之差距與b/(b+l)的關係圖: (a)低頻模態,(b)高頻模態。62
圖4.13 對圖1.1之T型微帶天線,在T型結構非對稱下,由模擬所得的共振頻率與(c-d)之值的關係圖。63
圖4.14 對圖1.1之T型微帶天線,在T型結構非對稱下,由模擬所得的輸入阻抗與(c-d)之值的關係圖。64
圖4.15 對圖1.1之T型微帶天線,在T型結構非對稱下,由模擬所得的Co-pol.與X-pol.峰值之差距與(c-d)之值的關係圖。65
[1]A. A. Kishk, K. F. Lee, W. C. Mok, K.-M. Luk, “A Wide-Band Small Size Microstrip Antenna Proximately Coupled to a Hook Shape Probe,” IEEE Transactions on Antennas and Propagation, Vol. 52, no. 1, pp. 59-65, Jan. 2004.
[2]B. L. Ooi, C. L. Lee, P. S. Kooi and S. T. Chew, “A Novel F-probe Fed BroadBand Patch Antenna,” IEEE Antennas and Propagation Society International Symposium, Vol. 4, pp. 474-477, Jul. 2001.
[3]C. A. Balanis, Antenna Theory Analysis and Design, 3rd Edition, 2005.
[4]C. S. Lee, V. Nalbandian, “Dual-band microstrip antenna with an airgap,” IEEE Antennas and Propagation Society International Symposium, Vol. 1, pp. 479 - 482, Jul 1992.
[5]C. S. Lee, V. Nalbandian, and F. Schwering, ”Planar Dual-Band Microstrip Antenna,” IEEE Transactions on Antennas and Propagation, Vol. 43, no. 8, Aug 1995.
[6]C. Y. Hung, C. W. Ling and J. S. Kuo, “Dual-band microstrip antenna using capacitive loading,” IEE Proceedings, Microwaves, Antennas and Propagation Vol. 150, pp. 401, Dec. 2003.
[7]H.-N. Wang, F.-C. Chen, “Dual-band patch antenna with electromagnetic bandgap structure,” Proceedings of Asia-Pacific Microwave Conference 2010, pp. 2009, Dec. 2010.
[8]I. Ang and B. L. Ooi, “A Broad Band Stacked Microstrip Patch Antenna,” Proceedings of Asia-Pacific Microwave Conference 2005, Vol.2, pp. 2, Dec. 2005.
[9]K.-F. Tong, K.-M. Luk, K.-F. Lee and R. Q. Lee, “A Broad-Band U-Slot Rectangular Patch Antenna on a Microwave Substrate,” IEEE Transactions on Antennas and Propagation. Vol. 48, no. 6, pp. 954-960, June 2000.
[10]K.-L. Wong and W.-H. Hsu, “A broad-band rectangular patch antenna with a pair of wide slits,” IEEE Transactions on Antennas and Propagation, Vol. 49, no. 9, pp. 1345-1347, Sept. 2001.
[11]K.-L. Wong and W.-S. Chen, “Compact microstrip antenna with dual-frequency operation,“ Electronics Letters, vol. 33, pp. 646-647, Apr. 1997.
[12]M. A. Matin, B. S. Sharif and C. C. Tsimenidis, “Dual- Frequency Microstrip Antenna with V Slot,” Wideband and Multi-band Antennas and Arrays, 2005, IEE pp. 183-184, Sept. 2005.
[13]P.-W. Chen and C. S. Lee “Planar Double-Layer Leaky-Wave MicrostripAntenna,” IEEE Transactions on Antennas and Propagation, Vol. 50, no. 6, Jun. 2002.
[14]R. S. Elliott, Antenna Theory Analysis and Design, Revised Edition, 2000.
[15]T. H. Hsieh, Double-Layer Microstrip Array Antenna, Ph. D. dissertation, Southern Methodist University, Dallas, Texas, USA, 1998.
[16]T.-H. Hsieh and C. S. Lee, “Double-layer high-gain microstrip array antenna,” IEEE Transactions on Antennas and Propagation, Vol. 48, no. 7, Jul. 2000.
[17]Y. T. Lo, D. Solomon and W. F. Richards, “Theory and Experiment on Microstrip Antennas,” IEEE Transaction on Antenna and Propagation Vol. 27, no. 2, Mar. 1979.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top