跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳佳軒
研究生(外文):Wu,Chia-Hsuan
論文名稱:具電池電壓平衡功能之雙向多階轉換器
論文名稱(外文):Bidirectional Multi-level Converter with Voltage Balance of Batteries
指導教授:陳良瑞
指導教授(外文):Chen, Liang-Rui
口試委員:謝冠群陳良瑞楊宗銘賴炎生陳財榮
口試委員(外文):Hsieh, Guan-ChyunChen, Liang-RuiYoung, Chung-MingLai, Yen-Shin
口試日期:2016-04-01
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:110
中文關鍵詞:電池平衡多階式換流器雙向交/直流電能傳輸低電壓諧波高功因
外文關鍵詞:voltage balance of batteriesmulti-level converterbidirectional AC/DC power transmissionlow voltage harmonichigh power factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:463
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文成功研製一“具電池電壓平衡功能之雙向多階轉換器”。其藉由將電池平衡控制與多階轉換器結合的方式,不需增加額外之平衡電路,即可達到雙向直/交流電能傳輸以及電池平衡充放電之效果。
本論文首先針對常使用之雙向多階轉換器架構進行探討,並選用串接半橋多階轉換器作為本文之轉換器架構,相對於其他架構,其具有元件使用量較少以及控制簡單的優點。接著,本文基於電池選擇式平衡控制原理描述本文所採用之系統以及其動作原理。其中系統可分別操作於整流器模式和換流器模式。當系統操作於換流器模式時,此時電池組作為電源,其可於輸出端產生一低電壓諧波之交流電壓源供負載使用,並同時達到電池平衡放電之目的。當系統操作於整流器模式時,系統可獲得高功率因數並對電池組進行電能儲存,達到電池平衡充電之目的。
本文最後實作一180W之原型機,並實際以四組電池驗證所提之系統,其中以三組48/7Ah之電池作為正常之電池,並一組48/5Ah之電池作為老化電池。由實驗結果可得,當系統操作於換流器模式時,與採用未平衡之控制之系統比較,其可用電量(Ah)提升20.58%且放電時間延長10.67%。而當系統操作於整流器模式時,其與採用未平衡之控制之系統比較,其充電電量(Ah)可提升22.45%。經實驗證明,本文所提系統可確實達成電池平衡充放電控制之目的。

In this dissertation, a bidirectional multi-level converter with voltage balance of batteries is successfully developed. By combining the battery balancing control and the multi-level converter, bidirectional AC/DC power transmission and battery balancing charging/discharging are achieved without the need of an additional battery balancing circuit.
In this dissertation, topologies of commonly used bidirectional multi-level converters are first investigated. Here, the cascaded half bridge multilevel converter is selected because of its smaller number of components and ease of control. The system utilized in this dissertation and its operating principles are then described from the perspective of selective battery balancing control. The system can be operated in rectifier and inverter modes. In the inverter mode, the battery acts as the power source and can produce an AC voltage source at the output with low voltage harmonic to supply the load while achieving balanced discharging. In the rectifier mode, the system can attain a high power factor and allow the battery to store charge while achieving balanced charging.
Finally, a 180 W prototype with four battery groups is designed to verify the proposed system. The prototype has three groups of 48/7 Ah batteries acting as normal batteries and a group of 48/5 Ah batteries acting as aging batteries. Experimental results show that when the system is operating in the inverter mode, its available capacity is 20.58% higher and its discharge time is 10.67% longer compared to a system without balance control. When the system is operating in the rectifier mode, its charge capacity is 22.45% higher compared to a system without balance control. The experiment confirms that the system proposed in this dissertation can achieve balanced battery charging and discharging.

摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 xii
第一章 緒論 1
1.1研究背景 1
1.2文獻回顧 2
1.3內容大綱 8
第二章 雙向多階轉換器 10
2.1二極體箝位式多階轉換器 10
2.2飛輪電容式多階轉換器 13
2.3 串接全橋多階轉換器 16
2.4 串接半橋多階轉換器 19
第三章 系統描述 24
3.1整流器模式 26
3.1.1整流器與功率因數修正 26
3.1.2電池選擇式平衡充電控制 32
3.2換流器模式 38
3.2.1多階轉換器之調變 45
3.2.2電池選擇式平衡放電控制 48
第四章 實例設計 53
4.1全橋式電路設計 55
4.2電感器設計 56
4.3半橋式電路設計 57
4.4交流端電壓/電流感測器 58
4.5控制器 62
4.5.1換流器模式程式流程 65
4.5.2整流器模式程式流程 74
第五章 實驗結果 85
5.1換流器操作與電池放電實驗 85
5.2電池充電實驗比較 91
第六章 結論與未來展望 101
6.1結論 101
6.2未來展望 102
參考文獻 103


[1] X. Luo, J. Wang, M. Dooner and J. Clarke, “Overview of current development in electrical energy storage technologies and the application potential in power system operation,” Elsevier: Applied Energy., vol. 137, pp. 511–536, Jan. 2015.
[2] R. Pena-Alzola, R. Sebastian, J. Quesada and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. 2011 Power Engineering, Energy and Electrical Drives (POWERENG), International Conference on, pp. 1-6. May 2011.
[3] 呂學隆,“2012年鉛酸電池市場概述與未來前景”,IEK產業情報網, 2013年8月。
[4] 林素琴、鄭弘珮,“中國大陸大型儲能產業現況發展”,IEK產業情報網, 2011年3月。
[5] 鄭婉真,“風力發電搭配儲能需求情境與市場趨勢分析”,IEK產業情報網,2012年10月。
[6] 鄭婉真,“電網用電化學儲能技術發展方向” ,IEK產業情報網,2013年1月。
[7] T. Hirose and H. Matsuo, “Standalone hybrid wind–solar power generation system applying dump power control without dump load,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 988–997, Feb. 2012.
[8] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery– supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944–953, Mar. 2014.
[6] A. Dizqah, A. Maheri, K. Busawon, and A. Kamjoo, “A multivariable optimal energy management strategy for standalone DC microgrids,” IEEE Trans. Power. Syst., vol. 30, no. 5, pp. 2278–2287, Sep. 2015.
[7] H. Kanchev, D. Lu, F. Colas, V. Lazarov, and B. Francois, “Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4583–4592, Oct. 2012.
[8] B. Y. Chen and Y. S. Lai, “New digital-controlled technique for battery charger with constant current and voltage control without current feedback,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1545–1553, Mar. 2012.
[9] M. Pahlevaninezhad, J. Drobnik, P. K. Jain, and A. Bakhshai, “A load adaptive control approach for a zero-voltage-switching dc/dc converter used for electric vehicles,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 920–933, Feb. 2012.
[10] H. Fakham, D. Lu, and B. Francois, “Power control design of a battery charger in a hybrid active PV generator for load-following applications,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 85–94, Jan. 2011.
[11] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881–3895, Dec. 2010.
[12] K. Jin, M. Yang, X. Ruan, and M. Xu, “Three-level bidirectional converter for fuel-cell/battery hybrid power system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, pp. 1976–1986, Jun. 2010.
[13] Qi, J. and Lu, D.D. C, “Review of battery cell balancing techniques,” In Proceedings of the Power Engineering Conference (AUPEC), pp. 1–6, Oct.2014.
[14] J. G. Lozano, E. R. Cadaval, “Battery equalization active methods,” J. Power Sources, vol. 246, pp. 934–949, 2014.
[15] D. C. Hopkins, C. R. Mosling and S. T. Hung, “Dynamic equalization during charging of serial energy storage elements,” IEEE Trans. Ind. Electron., vol. 29, no. 2, pp. 363-3623, March 1993.
[16] C. Pascual and P. T. Krein, “Switched Capacitor System for Automatic Series Battery Equalization,” IEEE Applied Power Electronics Conference and Exposition, APEC 1997, Vol. 2, pp. 848-854, Feb. 1997.
[17] G. A. Kobzev, “Switched-Capacitor Systems for Battery Equalization,” Modern Techniques and Technology, MTT 2000, pp. 57 -59, Mar. 2000.
[18] M. Kim, C. Kim, J. Kim, and G. Moon, “A chain structure of switched capacitor for improved cell balancing speed of lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 3989–3999, Aug. 2014.
[19] A. C. Baughman and M. Ferdowsi, “Double-tiered switched-capacitor battery charge equalization technique,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2277–2285, Jun. 2008.
[20] Y. Yuanmao, K. W. E. Cheng, and Y. P. B. Yeung, “Zero-current switching switched-capacitor zero-voltage-gap automatic equalization system for series battery string,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3234–3242, Jul. 2012.
[21] M. Uno and K. Tanaka, “Influence of high-frequency charge–discharge cycling induced by cell voltage equalizers on the life performance of lithium-ion cells,” IEEE Trans. Veh. Technol., vol. 60, no. 4, pp. 1505– 1515, May 2011.
[22] Y. S. Lee, M. W. Chen, K. L. Hsu, J. Y. Du, and C. F. Chuang, “Cell Equalization Scheme with Energy Transferring Capacitance for Series Connected Battery Strings,” IEEE Conference on Computers, Communications, Control and Power Engineering TENCON 2002, Vol. 3, pp. 2042-2045, Oct. 2002,
[23] M. Tang and T. Stuart, “Selective Buck-Boost Equalizer for Series Battery Packs,” IEEE Trans. Aero. Elec. Sys., Vol. 36, No. 1, Jane 2000, pp. 201-211.
[24] Y. S. Lee and G. T. Cheng, “Quasi-resonant zero-current switching bidirectional converter for battery equalization applications,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1213–1224, Sep. 2006.
[25] B. Dong, Y. Li and Y. Han, “Parallel Architecture for Battery Charge Equalization,” IEEE Trans. Power Electron., vol. 30, no. 9, pp. 4906- 4913, Sept. 2015.
[26] J. Ewanchuk and J. Salmon, “A modular balancing bridge for series connected voltage sources,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4712–4722, Sep. 2014
[27] M. Y. Kim, J. H. Kim, and G. W. Moon, “Center-cell concentration structure of a cell-to-cell balancing circuit with a reduced number of switches,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5285-5297, Oct. 2014.
[28] P. A. Cassani and S. S. Williamson, “Design, testing, and validation of a simplified control scheme for a novel plug-in hybrid electric vehicle battery cell equalizer,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3958–3962, Dec. 2010.
[29] S. H. Park, K. B. Park, H. S. Kim, G. W. Moon, and M. J. Youn, “Single magnetic cell-to-cell charge equalization converter with reduced number of transformer windings,” IEEE Trans. Power Electron., vol. 27, no. 6, pp. 2900–2911, Jun. 2012.
[30] H. S. Park, C. E. Kim, C. H. Kim, G. W. Moon, and J. H. Lee, “A modularized charge equalizer for an HEV lithium-ion battery string,” IEEE Trans. Ind. Electron., vol. 56, no. 5, pp. 1464–1476, May 2009.
[31] A. Shukla, A. Ghosh, and A. Joshi, “Flying-capacitor-based chopper circuit for DC capacitor voltage balancing in diode-clamped multilevel inverter,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2249–2261, Jul. 2010.
[32] M. Uno and A. Kukita, “Single-switch single-transformer cell voltage equalizer based on forward-flyback resonant inverter and voltage multiplier for series-connected energy storage cells,” IEEE Trans. Veh. Technol., vol. 63, no. 9, pp. 4232-4247, Nov. 2014.
[33] C. C. Hwa and Y.H. Fang, “A Charge Equalizer With a Combination of APWM and PFM Control Based on a Modified Half-Bridge Converter,” IEEE Trans. Power Electron., vol. 31, no. 4, pp. 2970- 2979, April 2016.
[34] C. M. Young, N.Y. Chu, L.R. Chen, S.Y. Jhin and C.Z. Li, “A Single-Phase Multilevel Inverter with Battery-Balancing,” IEEE Trans. Ind. Electron, vol. 60, no. 5, pp. 1972-1978, May 2013
[35] Z. D. Zheng, K. Wang, L. Xu and Y. D. Li, “A Hybrid Cascaded Multilevel Converter for Battery Energy Management Applied in Electric Vehicles,” IEEE Trans. Power Electron., vol. 29, no. 7, pp. 3537-3546, July 2014
[36] P. RoshanKumar, R. S. Kaarthik, K. Gopakumar, J. I. Leon and L. G. Franquelo, “A Seventeen-Level Inverter formed by Cascading Flying Capacitor and Floating Capacitor H-bridges,” IEEE Trans. Power Electron, vol. 99, pp. 1-8, July 2014
[37] F. Baronti et al., “Design and safety verification of a distributed charge equalizer for modular Li-ion batteries,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1003–1011, May 2014.
[38] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002.
[39] G. J. Su, “Multilevel DC-link inverter,” IEEE Trans. Ind. Appl., vol. 41,no. 3, pp. 848–854, May/Jun. 2005.
[40] M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez, “A survey on cascaded multilevel inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197–2206, Jul. 2010.
[41] R. Nagarajan and M. Saravanan, “Performance analysis of a novel reduced switch cascaded multilevel inverter,” Journal of Power Electronics, Vol. 14, No. 1, pp. 48-60, Jan. 2014.
[42] E. Solas, G. Abad, J. Barrena, S. Aurtenetxea, A. Carcar, and L. Zajac,“Modular multilevel converter with different submodule concepts-part I:Capacitor voltage balancing method,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4525–4535, Oct. 2013.
[43] S. Debnath, J. Qin, B. Bahrani, M. Saeedifard, and P. Barbosa, “Operation, control, and applications of the modular multilevel converter: A review,” IEEE Trans. Power Electron., vol. 30, no. 1, pp. 37–53, Jan. 2015.
[44] W. Y. Choi, J. M. Kwon and B. H. Kwon, “Bridgeless dual-boost rectifier with reduced diode reverse-recovery problems for power-factor correction,” Power Electron., IET, vol.1 , no.2 , pp.194-202, 2008.
[45] D. N. Samaraweera and Dylan Dah-Chuan Lu “Novel Implementation of Average Current Mode Controlled Power-Factor-Correction Converters,” ICIEA 2007. 2nd IEEE Conference on Ind. Electron. and Appl., pp.1468-1472, 2007.
[46] B. R. Lin and H. H. Lu, “Single-phase power-factor-correction AC/DC converters with three PWM control schemes,” IEEE Trans. on Aero. and Electron. Sys., vol.36,no.1, pp.189-200,January 2000.
[47] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May 2008.
[48] B. Lu, R. Brown, and M. Soldano, “Bridgeless PFC implementation using one cycle control technique,” IEEE Applied Power Electronics Conference and Exposition, vol. 2, pp. 812-817, March 2005.
[49] B. Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, T. McNutt, A. Lostetter, J. Lee, and K. Shiozaki, “A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2606–2617, Aug. 2013.
[50] Texas Instruments Technology Inc., “Voltage Source Inverter Design Guide,” Texas Instruments Technology Technology, 2015.
[51] Microchip Technology Inc., “dsPIC30F1010/202X Data Sheet,” Microchip Technology, 2006.
[52] Dr Ali Shirsavar, “Designing Stable Digital Power Supplies,” Biricha Digital Power Ltd.
[53] M. J. Xie, “Digital Control for Power Factor Correction. M.S. Thesis,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, pp. 1-109, 2003
[54] A. Olayiwola, B. Sock, M. R. Zolghadri, A. Homaifar, M. Walters, and C. Doss, “Digital controller for a boost PFC converter in continuous conduction mode,” in Proc. 1st IEEE Conf. Ind. Electron., pp. 1–8, Appl. 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top