跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/09 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳智偉
研究生(外文):Chih-Wei Wu
論文名稱:Dependence-Switching模型在股票指數期貨動態避險上之運用
論文名稱(外文):An Application of Dependence-Switching Model to Dynamic Stock Index Futures Hedging
指導教授:江福松江福松引用關係賴奕豪賴奕豪引用關係
指導教授(外文):Fu-Sung ChiangYi-Hao Lai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:應用經濟研究所
學門:社會及行為科學學門
學類:經濟學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:44
中文關鍵詞:股價指數期貨避險copuladependence-switching
外文關鍵詞:stock indexfutureshedgecopuladependence-switching
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去研究在估計最小變異最適避險比率(minimum variance optimal hedge ratios)時,大多採用最小平方法(Ederington, 1979;Figlewski, 1984)、共整合法(Ghosh, 1993;Lien and Luo, 1993)或允許變異數隨時間變動的雙變量GARCH 系列模型(Baillie and Myers, 1991;Kroner and Sultan, 1993;Park and Switzer, 1995;Gagnon and Lypny, 1995; Kavussanos and Nomikos, 2000;Bystrom, 2003)。惟前述模型基本上皆利用期、現貨間的「線性」相關(linear correlation)來計算最適避險比率,一旦期、現貨間呈現非橢圓聯合分配時,抑或存在非線性(nonlinear)相關結構,其相關性的估計有可能出現偏誤。
具有不對稱及極值特性的copula函數不僅能打破以往的假設限制,更能呈現期、現貨間大幅共漲、共跌的特性。本研究整合copula函數與Hamilton (1989, 1994)馬可夫轉換(Markov-switching)模型,建立允許期、現貨間相關性可在兩不同相關結構間不斷轉換的dependence-switching (DS)模型。應用此模型估算不同狀態下的相關性與避險比率,據以建構股票指數期、現貨動態避險策略。本研究實證結果發現,由DS模型所建構之避險投資組合避險績效優於傳統方法(OLS、ECM 及DCC-GARCH)。

The ordinary least squares (OLS) technique (Ederington, 1979; Figlewski, 1984), the co-integration method (Ghosh, 1993; Lien and Luo, 1993), and the bivariate GARCH-type models allowing time-varying nature in asset returns (Baillie and Myers, 1991; Kroner and Sultan, 1993; Park and Switzer, 1995; Gagnon and Lypny, 1995; Kavussanos and Nomikos, 2000; Bystrom, 2003) are the most common approaches to estimate minimum-variance hedge ratios. However, those conventional approaches have been used to calculate the optimal hedge ratios in a sense of linear correlation which could result in bias estimates if the joint distribution of spot and futures is not elliptical and/or is non-linear.
Since copula functions of asymmetric dependence structures and extreme values can capture the extreme co-movements of spot and futures, this study builds a dependence-switching model (DS model), which is integrated by copula functions and Markov-switching model by Hamilton (1989, 1994) and is allowed that the dependence of spot and futures can switch between two different structures. We construct a hedging portfolio via the DS model and evaluate the dynamic hedging performance. The results show that the DS model outperforms the conventional approaches such as OLS, ECM, and DCC-GARCH.

謝 辭 i
摘 要 ii
Abstract iii
目錄 iv
表次 vi
圖次 vii
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 5
第三節 論文架構 6
第四節 研究流程 7
第貳章 文獻回顧與探討 8
第一節 避險理論回顧 8
第二節 Copula 模型相關文獻回顧 12
第參章 研究方法與實證模型建構 14
第一節 Copula相關模型與估計 14
第二節 Dependence-switching模型建立與估計 23
第三節 傳統避險模型 26
第肆章 資料特徵與實證結果分析 28
第一節 資料特徵 28
第二節 實證結果分析 35
第伍章 結論與建議 38
第一節 結論 38
第二節 建議 39
第三節 研究限制與未來研究方向 40
參考文獻 41




Ang, A. and Chen, J., 2002, Asymmetric Correlations of Equity Portfolios. Journal of Financial Economics, 63, 443-94.

Baillie, R. and Myers, R., 1991, Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge. Journal of Applied Econometrics, 6, 109-24.

Benet, B. A., 1992, Hedging Period Length and Ex-ante Futures Hedging Effectiveness: The Case of Foreign Exchange Risk Cross Hedges. Journal of Futures Markets, 12, 163-75.

Bystrom, H., 2003, The Hedging Performance of Electricity Futures on the Nordic Power Exchange. Applied Economics, 35, 1-11.

Cherubini, U., Luciano, E. and Vecchiato, W., 2004, Copula Methods in Finance (John Wiley and Sons).

Chollete, L., Heinen, A., and Valdesogo, A., 2008, Modeling International Financial Returns with a Multivariate Regime Switching Copula. MPRA Paper 8114, University Library of Munich, Germany.

Duan, J, Gauthier, G., Sasseville, C., and Simonato, J., 2006, Approximating the GJR-GARCH and EGARCH Option Pricing Models Analytically. Journal of Computational Finance, 9.

Ederington, L., 1979, The Hedging Performance of the New Futures Markets. The Journal of Finance, 34, 157-70.

Engle, R., 2002, Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models. Journal of Business and Economic Statistics, 20, 339-50.

Fernandez, V., 2008, Multi-Period Hedge Ratios for A Multi-Asset Portfolio When Accounting for Returns Co-movement. Journal of Futures Markets, 28, 182-207.

Figlewski, S., 1984, Hedging Performance and Basis Risk in Stock Index Futures. Journal of Finance, 39, 657-69.

Fortin, I. and C. Kuzmics, 2002, Tail-Dependence in Stock-Return Pairs. International Journal of Intelligent Systems in Accounting, Finance and Management, 11, 89-107.

Gagnon, L. and Lypny, G., 1995, Hedging Short-Term Interest Risk under Time-Varying Distribution. Journal of Futures Markets, 15, 767-83.

Garcia, R., and Tsafak, 2007, Dependence Structure and Extreme Comovements in International Equity and Bond Markets with Portfolio Diversification Effects. Technical Report, CIRANO.

Genius, M. and Strazzera, E., 2008, Applying the Copula Approach to Sample Selection Modelling. Applied Economics, 40, 1443-1455.

Ghosh, A., 1993, Hedging with Stock Index Futures: Estimation and Forecasting with Error Correction Model. Journal of Futures Markets, 13, 743-52.

Glosten, L.R., R. Jagannathan, and D. Runkle (1993), On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks, Journal of Finance, 48, 1779-1801.

Hamilton, J. D., 1989, A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle. Econometrica, 57, 357-84.

Hamilton, J. D., 1994, Time Series Analysis (Princeton Press).

Howard, C.T. and D’Antonio, L.J. (1984), A risk-return measure of hedging effectiveness, Journal of Financial and Quantitative Analysis, 19, 1, 373-81.

Hu, L., 2006, Dependence Patterns across Financial Markets: A Mixed Copula Approach. Applied Financial Economics, 16, 717-29.

Joe, H., 1997, Multivariate Models and Dependence Concepts (Chapman and Hall).

Joe, H., and Xu, J., 1996, The Estimation Method of Inference Functions for Margins for Multivariate Models. Technical Report 166, Department of Statistics, University of British Columbia.

Johnson, L., 1960, The Theory of Hedging and Speculation in Commodity Futures. Review of Economic Studies, 27, 139-51.

Kahl, K.H. (1983), Determination of the Recommended Hedging Ratio, American Journal of Agricultural Economics, 65, 603-05.

Kavussanos, M. and Nomikos, N., 2000, Hedging in the Freight Futures Market. Journal of Derivatives, 8, 41-58.

Kroner, K. and Sultan, J., 1993, Time-Varying Distribution and Dynamic Hedging with Foreign Currency Futures. Journal of Financial and Quantitative Analysis, 28, 535-51.

Lai, Y., Chen, C., and Gerlach, R., 2009, Optimal Dynamic Hedging via Asymmetric Copula-GARCH Models. Mathematics and Computers in Simulation, 79, 2609-24.

Li, D. X., 2000, On Default Correlation: A Copula Function Approach, Journal of Fixed Income, 9, 43-54.

Lien, D. and Luo, X., 1993, Estimating Multi-period Hedge Ratios in Cointegrated Markets. Journal of Futures Markets, 13, 909-20.

Longin, F. and Solnik, B., 2001, Extreme Correlation of International Equity Markets. Journal of Finance, 56, 649-76.

Mendes, B., 2005, Asymmetric Extreme Interdependence in Emerging Equity Markets. Applied Stochastic Models in Business and Industry, 21, 483-98.

Nelsen, R., 1999, An Introduction to Copulas (Spring-Verlag).

Park, T. and Switzer, L., 1995, Bivariate GARCH Estimation of the Optimal Hedge Ratios for Stock Index Futures: A Note. Journal of Futures Markets, 15, 61-67.

Patton, A., 2006, Modelling Asymmetric Exchange Rate Dependence. International Economic Review, 47, 527-56.

Pelletier, D., 2006, Regime-Switching for Dynamic Correlation. Journal of Econometrics, 131, 445-73.

Sharpe, W. F.,1966, Mutual fund performance. Journal of Business, 39, 1, 119-38.

Sklar, A., 1959, Fonctions de réparition á n dimensions et leurs marges, Publications de l’Institut de Statistique de l’Université de Paris, 8, 229-31.

Stein, J. L. 1961, The Simultaneous Determination of Spot and Futures Prices, The American Economic Review, 51, 1012-25.

Turgutlu, E. and Ucer, B., 2008, Is Global Diversification Rational? Evidence from Emerging Equity Markets through Mixed Copula Approach. Applied Economics, DOI: 10.1080/0003684070170448

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top