跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林依萱
研究生(外文):E-Shen Lin
論文名稱:共同轉移Bt基因到結球白菜葉綠體之研究
論文名稱(外文):Co-Transferring Bt Genes into the Chloroplasts of Chinese Cabbage
指導教授:曾夢蛟
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:77
中文關鍵詞:蘇力菌葉綠體基因槍轉殖法共同轉殖
外文關鍵詞:Bacillus thuningiensisChloroplastparticle bombardmentco-transferring
相關次數:
  • 被引用被引用:2
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蕓苔屬蔬菜在台灣有著重要的民生及經濟地位,但因夏季氣候高溫多濕,易造成病蟲害危害嚴重。為了防治蟲害,農民每年花費相當高的成本在田間噴灑農藥,但過度的施用農藥,不但對蟲產生了抗藥性,每年也需要花費更高的成本來做害蟲防治的工作,除此之外,農民的健康也會因可能吸入太多的農藥而造成損害。因此培育抗蟲害的蕓苔屬蔬菜品種,是改善台灣夏季蔬菜生產的重要研究工作。
蘇力菌(Bacillus thuningiensis, bt) 殺蟲晶體蛋白(insecticidal crystal proteins, ICP) 是開發甚早且效果與安全性廣受肯定的生物性農藥之一,目前利用植物基因工程,轉移bt基因,培育出抗蟲作物,已有許多報導,且部分已商品化生產。以植物葉綠體基因組 (plastid genome, plastome) 為基因轉殖目標,是目前植物基因轉殖的新趨勢。此外,將多個性狀或多個基因同時送入植物基因組的多基因轉殖,已成為作物育種的新趨勢。本研究係將以prrn為啟動子的cry1Ab及cry1Ac基因、cry1Ab及cry1C基因、cry1Ac及cry1C基因等bt基因,藉由基因槍法 (particle bombardment) 轉殖至結球白菜的葉綠體。本研究的目的為建立結球白菜之葉綠體基因共同轉殖系統,並探討利用葉綠體基因轉殖培育出抗蟲害及不會造成基因污染之結球白菜的可行性。
本研究將pCHL-1Ab-1Ac (cry1Ab及cry1A基因)、pCHL-1Ab-1C (cry1Ab及cry1C基因)及pCHL-1Ac-1C (cry1Ac及cry1C基因)等質體藉由基因槍法轟擊至''玉冠''結球白菜葉片的葉綠體,篩選對 10 ppm Spectinomycin 有抗性的再生轉殖植株。轉殖植株均經由PCR、南方墨點雜交、RT-PCR及西方墨點雜交等分析進一步確認。試驗結果顯示有二株轉殖植株為同時能表現cry1Ab 與cry1C 基因 (CCBT-02) 及cry1Ab 與cry1Ac 基因(CCBT-05)的共同bt轉殖結球白菜,殺小菜蛾幼蟲效果可達到100%;有一株轉殖植株為cry1Ab 與cry1Ac 基因(CCBT-05)共同轉殖的結球白菜,但僅能表現cry1Ab基因,也具有殺蟲效果;另一株轉殖植株(CCBT-03)為cry1Ab 與cry1C 基因共同轉殖的結球白菜,但均無法偵測到其各別基因之表現,殺蟲效果則達60%;而不是基因轉殖植株(CCBT-04)及未轉殖對照組植株 (CK)則受到小菜蛾幼蟲啃食,危害情形十分嚴重。
Brassica vegetables play an important role in livelihood of the people and the economic status in Taiwan. In summer, the high temperature and humidity cause very serious and plant diseases in combination with pesis and insects. In order to prevent and control the and insect pest, the farmers spend quite high cost to spray the agricultural chemicals every year in the field.But excessively use of pesticides, not only rsults in resisternce to cheimicals in the insect, also makes a higher cost every year to prevent and conteol the insect. On the other hand, the excessive use of pesticides has caused significant human health problems and environmental damage. Therefore, development of more insect­resistant Brassica varieties is considered to be of great economic importance in Taiwan.
Bacillus thuningiensis (Bt) produces a variety of insecticidal crystal proteins (ICPs) upon sporulation which are highly toxic to several insects. Different ICP genes of Bt have been successfully engineered into many crop-plants to obtain resistance against Lepidopteran insects. Chloroplast transformation technologies are a promising tool in biotechnology. On the basis of the increase in activities of multiple Bt proteins providing plants with better insect-defense capability, we propose to transfer cry1Ab, cry1Ac and cry1C genes into the chloroplast of Chinese cabbage. The objectives of this study are to establish the chloroplast gene transfer technology of Chinese cabbage and to study the possibility for improvement of Brassica vegetables with insect resistance and reduce the gene pollution via chloroplast transformation.
The cry1Ab+cry1Ac (pCHL-1Ab-1Ac), cry1Ab+cry1C (pCHL-1Ab-1C), or cry1Ac+cry1C (pCHL-1Ac-1C) genes were transferred into the ''Jade Crown'' cabbage chloroplast via particle gun mediated transformation. Transgenic plants were confirmed by resistance to 10 ppm of spectinomycin. The results of PCR, Southern hybridization, RT-PCR and Western hybridization analysis indicated that the transformed bt genes were integrated into the chloroplast genome and expressed its mRNA and protein. High degree of resistance to the Plutella xylostella were found in the transformed plants containing either one (CCBT-05, expressed cry1Ab) or two bt genes (CCBT-02: expressed cry1Ab and cry1C ; CCBT-05: expressed cry1Ab and cry1Ac).
總 目 錄
中文摘要..................................................i
英文摘要.................................................ii
目錄....................................................iii
圖表目次.................................................iv
前言......................................................1
前人研究..................................................3
ㄧ、葉綠體基因轉殖之研究..................................3
二、蘇力菌殺蟲晶體蛋白之研究..............................7
三、蕓苔屬蔬菜之基因轉殖之研究...........................12
材料方法.................................................15
結果.....................................................26
ㄧ、葉綠體bt基因轉殖載體之檢驗...........................26
二、Bt蛋白表現載體(pET30a-Ab、pET-30a-Ac 與pET30a-1C)之構
築及其表現分析........................................26
三、以基因槍轟擊cry1Ab、cry1Ac及cry1C基因至結球白菜及葉片
誘導植株再生.........................................27
四、篩選及檢驗轉殖cry1Ab、cry1Ac及cry1C 基因之結球白菜...28
討論.....................................................63
一、Bt蛋白表現載體(pET30a-Ab、pET-30a-Ac 與pET30a-1C)之構
築及其表現分析.......................................63
二、以基因槍轟擊cry1Ab、cry1Ac及cry1C基因至結球白菜葉片誘
導植株再生...........................................63
三、篩選及檢驗轉殖cry1Ab、cry1Ac及cry1C 基因之結球白菜...65
四、轉殖結球白菜植株抗蟲特性分析.........................67
參考文獻.................................................69

圖表目次
表一、不同年齡與部位之培殖體對''玉冠''結球白菜癒傷組織誘導
及芽梢再生的影響...................................32
表二、轉殖bt基因(cry1Ab、cry1Ac及cry1C)的''玉冠''結球白菜經
PCR、南方墨點雜交、RT-PCR及西方墨點雜交分析之結果..33
表三、小菜蛾餵食轉殖Bt基因(cry1Ab、cry1Ac及cry1C)的''玉冠
''結球白菜再生植株葉片,72小時後,死亡的百分比.......34
圖一、以限制酵素 pstⅠ及kpnⅠ切割攜帶 bt 基因之甘藍葉綠體
轉殖載體(pCHL-1Ac-1Ab、pCHL-1Ac-1C、pCHL-1Ac-1C) 之
情形...............................................35
圖二、以PCR檢測pCHL-1Ac-1Ab、pCHL-1Ac-1C及 pCHL-1Ac-1C載
體之正確性.........................................36
圖三、pET30a-1Ab之構築流程及限制酵素圖譜.................37
圖四、pET30a-1Ac之構築流程及限制酵素圖譜.................38
圖五、pET30a-1C之構築流程及限制酵素圖譜..................39
圖六、pET30a-1Ac、pET30a-1Ab及pET30a-1C等蛋白表現載體以限
制酵素切割後,經電泳分離出不同大小片段.............40
圖七、以PCR檢測pET30a-1Ac、pET30a-1Ab及pET30a-1C之蛋白表
現載體正確性.......................................41
圖八、以SDS-PAGE分析cry-1Ab基因在E. coli BL-21(DE3)中表現
的情形.............................................42
圖九、以SDS-PAGE分析cry-1Ac基因在E.coli BL-21(DE3)中表現
的情形.............................................43
圖十、以SDS-PAGE分析cry-1C基因在E.coli BL-21(DE3)中表現的
情形...............................................44
圖十一、以SDS-PAGE分cry-1Ab、cry-1Ac及cry-1C基因在E.coli
BL-21(DE3)中表現的情形(A), 及以化學冷光西方墨點雜交
分析cry1Ab、cry1Ac及cry1C蛋白質的表現的情形(B).....45
圖十二、9天齡子葉(A)、14天齡葉片(B)、27天齡葉片(C)之''玉
冠''結球白菜培殖體的再生情形,及14天齡葉片之芽梢再
生情形(D) ........................................46
圖十三、''玉冠'' 結球白菜之再生芽體培養在含有不同濃度的
spectinomycin的再生培養基,生長21 天之前(上排)及
之後(下排)的情形。Spectinomycin 的濃度分別為0(A)、
5(B)、10(C)及15ppm(D)............................47
圖十四、結球白菜葉綠體基因轉殖再生情形...................48
圖十五、轉移bt基因(pCHL-1Ac-1Ab、pCHL-1C-1Ac 及 pCHL-1Ab-
1C )的''玉冠''結球白菜,以引子 A 1、A2 分析aadA 基
因,經PCR反應之產物在電泳膠片上分離之情形。CK:未
轉殖''玉冠''結球白菜...............................49
圖十六、轉移bt基因(pCHL-1Ac-1Ab及 pCHL-1Ab-1C)的''玉冠''結
球白菜,以引子3、4分析cry1Ab 基因,經PCR反應之產
物在電泳膠片上分離之情形。CK:未轉殖''玉冠''結球白
菜...............................................50
圖十七、轉移bt基因 (pCHL-1Ac-1Ab 及 pCHL-1C-1Ac) 的’玉冠’
結球白菜,以引子1、2分析cry1Ac 基因,經PCR反應之
產物在電泳膠片上分離之情形。CK:未轉殖’玉冠’結
球白菜...........................................51
圖十八、轉移bt基因 (pCHL-1C-1Ac 及 pCHL-1Ab-1C ) 的''玉冠''
結球白菜,以引子 5、6 分析cry1C 基因,經PCR反應之
產物在電泳膠片上分離之情形。CK:未轉殖''玉冠''結球
白菜.............................................52
圖十九、轉移 aadA 基因的’玉冠’結球白菜,其DNA以限制酵素
Pst I及KpnⅠ切割,再以aadA的PCR產物作為探針經南方
墨點雜交法分析之情形。CK:對照組.................53
圖二十、轉移 cry1Ab基因的''玉冠''結球白菜,其DNA以限制酵素
Pst I切割,再以cry1Ab 的PCR產物作為探針經南方墨點
雜交法分析之情形。CK:對照組.....................54
圖二十一、轉移 cry1Ac 基因的’玉冠’結球白菜,其DNA以限制
酵素KpnI切割,再以cry1Ac 的PCR產物作為探針經南
方墨點雜交法分析之情形。CK:對照組.............55
圖二十二、轉移 cry1C基因的’玉冠’結球白菜,其DNA以限制酵
素PstI切割,再以cry1C 的PCR產物作為探針經南方墨
點雜交法分析之情形。CK:對照組..................56
圖二十三、轉移bt基因 (pCHL-1Ac-1Ab 、pCHL-1C-1Ac 及 pCHL-
1Ab-1C)的’玉冠’結球白菜,以引子 A 1、A2 分析
aadA mRNA,經RT-PCR反應之產物在電泳膠片上分離之
情形。CK:未轉殖’玉冠’結球白菜................57
圖二十四、轉移bt基因 (pCHL-1Ac-1Ab及 pCHL-1Ab-1C) 的''玉
冠''結球白菜,以引子3、4分析cry1Ab mRNA,經RT-PCR
反應之產物在電泳膠片上分離之情形。CK:未轉殖''玉
冠''結球白菜.....................................58
圖二十五、轉移bt基因(pCHL-1Ac-1Ab 及 pCHL-1C-1Ac ) 的''玉
冠''結球白菜,以引子1、2 分析cry1Ac mRNA,經RT-
PCR反應之產物在電泳膠片上分離之情形。CK:未轉殖
''玉冠''結球白菜...................................59
圖二十六、轉移bt基因 (pCHL-1C-1Ac 及 pCHL-1Ab-1C ) 的''玉
冠''結球白菜,以引子 5、6 分析cry1C mRNA,經RT-PCR
反應之產物在電泳膠片上分離之情形。CK:未轉殖''玉
冠''結球白菜.....................................60
圖二十七、轉殖 bt基因(pCHL-1Ac-1Ab、pCHL-1Ab-1C、pCHL-1C-
1Ac)的''玉冠''結球白菜,以化學冷光西方墨點雜交分析
cry1Ab (A)、cry1Ac (B) 及cry1C (C) 蛋白質表現的
情形。萃取轉殖bt基因的結球白菜再生殖株之蛋白質經
SDS-PAGE 分離,並以蘇力菌晶體蛋白多株抗體偵測。
CK:未轉殖植株..................................61
圖二十八、轉殖cry1Ab、cry1Ac 及cry1C 基因 (pCHL-1Ab-1C、
pCHL-1Ab-1Ac及pCHL-1C-1Ac) 的''玉冠''結球白菜,及
對照組(CK)的葉片,餵食菜蛾72小時前(上)及後(下),
小菜蛾危害葉片之情形。分別餵食:CK 8隻;CCBT-01 4
隻;CCBT-02 3隻;CCBT-03 6隻;CCBT-04 9隻;CCBT-
05 5隻小菜蛾.....................................62
尤進欽、曾夢蛟、陳良築。1996。蘇力菌殺蟲晶體蛋白基因轉移到青花菜、花椰菜及小白菜。中國園藝42: 312-330。
吳佳春。2002。結球白菜的超氧化歧化酵素與過氧化氫酵素基因轉移至甘藍及結球白菜之研究。國立中興大學園藝學研究所碩士論文。
林志輝、曾經洲、高穗生、陳良築。2003。含蘇力菌毒素基因cry1Aa1 之轉形葉表生菌Erwinia herbicola 的殺蟲效力與拮抗植物病原菌之分析。中華農業學會報 4: 17-29。
林志輝、曾經洲、陳良築。2003。蘇力菌毒素基因轉殖與作物蟲害防治。植物保護學會特刊 新五號。p.137-158。植物保護管理永續發展研討會專刊。
林志輝、黃文忠、曾經州、陳良築。2002。含蘇力菌毒素基因cry1Aa之轉形葉表生菌Erwinia herbicola 的殺蟲活性與質體留存之分析。植物保護學會會刊 44: 21-36。
林志輝。2003。抗蟲基因轉殖與葉綠體內轉錄終止之研究。國立中興大學分子生物學研究所博士論文。
高穗生、謝奉家。2003。本土蘇力菌基因選殖及應用。植物保護學會特刊 新五號(植物保護管理永續發展研討會專刊)。p.249-258。
張隆武、曾夢蛟。1997。蘇力菌殺蟲晶體蛋白基因轉移至甘藍之研究。興大園藝 22: 61-73。
陳立德。2005。基因槍法共同轉殖基因到甘藍葉綠體之研究。國立中興大學園藝學研究所碩士論文。
曾經洲、高穗生、陳良築、翟建富、侯豐男。2002。蘇力菌台灣分離株cry1Ac 基因之選殖與表現測試。植物保護學會會刊 44: 185-208。
曾夢蛟、劉程煒。2004。甘藍之基因轉殖技術。植物基因轉殖與分子檢測技術-第二章:十字花科作物-第三節: p.57-74。植物生物技術教學資源中心主編。
黃群益、曾夢蛟。2000。共同轉移蘇力菌殺蟲晶體蛋白、D型氨基酸氧化酵素、轉酮醇酵素、熱休克蛋白等基因至甘藍之研究。興大園藝 24(4): 47-58。
黃鵬文。1992。蘇力菌殺蟲晶體蛋白基因之分離及應用。國立中興大學分子生物研究所碩士論文。
葉元純。2003。共同轉殖蘇力菌殺蟲晶體蛋白、熱休克蛋白、超氧化歧化酵素及過氧化氫酵素等基因至結球白菜及甘藍之研究。國立中興大學園藝學研究所碩士論文。
詹明才、陳良築、張新雄。1996。蘇力菌殺蟲晶體蛋白基因再轉殖馬鈴薯的表現。中央研究院植物學會彙刊 37: 17-23。
廖芳心。1998。應用花粉管基因導入輔助甘藍抗黑腐病育種之研究。中國園藝。44(1): 55-63。
劉程煒。2003。水稻農桿菌基因轉殖系統與甘藍及水稻葉綠體基因轉殖系統之建立及應用。國立中興大學園藝研究所博士論文。
鄭仁傑。2005。蘇力菌則亞種cry1Aa、cry1Ab、cry1C 及 cry1Da 基因之選殖與表現。朝陽科技大學應用化學研究所碩士論文。
Barton, K. A., H. R. Whiteley and N. S. Yang. 1987. Bacillus thuringiensis δ-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insect. Plant Physiol. 85: 1103-1109.
Bechtel, D. B., and L. A. Bulla. 1976. Electon microscope study of sporulation and parasporal crystal formation in Bacillus thuringiensis: pathogenicity for larvae for larvae of Lepidoptera. J. Bacteriol. 127: 1477-1481.
Bogorad, L. 2000. Engineering chloroplasts: An alternative site for foreign genes, proteins, reactions and products. Trends Biotechnol. 18(6): 257-263.
Bradley, D., M. A. Harkey, M. K. Kim, K. D. Biever, and L. S. Bauer, 1995. The insecticidal CryIB crystal protein of Bacillus thuringiensis ssp. thuringiensis has dual specificity to coleopteran and lepidopteran larvae. J. Invertebr. Pathol. 65: 162-173.
Cai, X. N., J. M. She, Z. Zhu, W. M. Zhu, X. H. Yuan and X. J. Su. 1997. Establishment of Agrobacterium-mediated genetic transformation system of common Chinese cabbage (Brassica chinensis). Jiangsu J of Agri Sci. 13(2): 110-114.
Cao, J., J. Z. Zhao, J. D. Tang, A. M. Shelton, and E. D. Earle. 2002. Broccoli plants with pyramided cry1C and cry1Ac Bt genes control diamondback moths resistant to Cry1A and Cry1C proteins. Theor. Appl. Genet. 105: 258-264.
Chen, L. F. O., J. Y. Hwang, Y. H. Wang, Y. T. Chen and J. F. Shaw. 2004. Ethylene insensitivity and post-harvest yellowing retardation in mutant ethylene response sensor (boers) gene transformed broccoli (Brassica oleracea var. Italica). Mol. Breed. 14: 199-213.
Cho, H. S., J. Cao, J. P and E. D. Earle. 2001. Control of Lepidopteran insect pests in transgenic Chinese cabbage(Brassica rapa ssp. pekinensis)transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep. 20: 1-7.
Corneille, S., K. Lutz, Z. Svab and P. Maliga. 2001. Efficient elimination of selectable marker genes from the plastid genome by the Cre-lox site-specific recombination system. Plant J. 27: 171-178.
Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. R. Van, D. Lereclus, J. Baum, and D. H. Dean, 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813.
Dale, E. C and D. W. Ow. 1990. Intra-and intermolecular site-specific recombination in plant cells mediated by bacteriophage P1 recombinase. Gene 91: 79-85.
Dale, E. C and D. W. Ow. 1991. Gene transfer with subsequent removal of the selection gene from the host genome. Proc. Nati. Acad. Sci. USA 88: 10558-10562.
Daniell, H and S. Varma. 1998. Chloroplast-transgenic plant: panacea-no! gene containment-yes! Nat. Biotechnol. 16: 602.
Daniell, H., B. Muthukumar and S. B. Lee. 2001. Marker free transgenic plants: engineering the chloroplast genome without use of antibiotic selection. Curr. Genet. 39: 109-116.
Daniell, H., R. Datta, S. Varma, S. Gray and S. B. Lee. 1998. Containment of herbicide resistance through geneyic engineering of the chloroplast genome. Nat. Biotechnol, 16: 345-348.
Daniell, H., S. Kumar and N. Dufourmantel. 2005. Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends in Biotechnology. 23(5): 238-245
Daniell, H., S. B. Lee, T. Panchal and P. O. Wiebe. 2001. Expression of the native cholera toxin B subunit gene and assembly as functional oligomers in transgenic tobacco chloroplast. J. Mol. Biol.311:1001-1009.
DeCosa, B., W. Moar. S. B. Lee, M. Miller and H. Daniell. 2001. Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals crystals. Nat. Biotechnol. 19: 71-74.
de Maagd, R. A. Bravo, and N. Crickmore 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet., 17: 193-199.
DeGray, G., K. Rajasekaran, F. Smith, J. Sanford and H. Daniell. 2001. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127:852-862.
Ding. 1998. Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Rep. 17: 854-860.
Estruch, J. J., N. B. Carozzi. N. Desai. N. B. Duck, G. W. Warren and M. G. Koziel. 1997. Transgenic plants: an emerging approach to pest control. Nat. Biotechnol. 15: 137-141.
Fisher, N., O. Stampacchia, K. Redding and J. D. Rochaix. 1996. Selectable marker recycling in the chloroplast. Mol. Gen Genet. 251(3): 373-380.
Francesco, S., M. M. Rigano, A. Barbante, B. Basso, A. M. Walmsley and S. Castiglione. 2003 Vaccine antigen production in transgenic plants: strategies,gene constructs and perspectives. Vaccine 21: 803-808.
Fuchs, R. L., S. C. MacIntosh, D. A. Dean, J. T. Greenplata, F. J. Perlak, J. C. Pershing, P. G. Marrone and D. A. Fischhoff. 1990. Quantification of Bacillus thuringiensis insect control protein as expressed in transgenic plants. In Analytical Chemistry of Bacillus thuringiensis, Hickle, L. A. and W. L. Fitch (ed.). American Chemistry Society, Washington, DC.
Gawron-Burke, C and J. A. Baum1991. Genetic manipulation of Bacillus thuringiensis insecticidal crystal protein genes in bacteria. Genet. Eng. (NY) 13: 237-263.
Gill, S. S., E. A. Cowles and P. V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636.
Glare, T. R., and M. O’Callaghan 2000. Bacillus thuringiensis: biology, ecology and safety. John Wiley&Sons, West Sussex, UK. 350 pp.
Gould, F. 1998. Sustainability of transgenic transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43: 701-726.
Griffitts, J. S., J. L. Whitacre, D. E. Stevens and R. V. Aroian. 2001. Bt toxin resistance from loss of a putative carbohydrate-modifying enzyme. Sci. 293(5531): 860-864.
Groat, R. G., J. W. Mattison and E. J. French. 1990. Quantitative immunoassay of insecticidal proteins in Baccillus thuringiensis products. In Analytical Chemistry of Bacillus thuringiensis, Hickle, L. A. and W. L. Fitch (ed). American Chemistry Society, Washington, DC.
Heifetz, P. B. 2000. Genetic engineering of the chloroplast. Biochimie. 82: 655-666.
Henzi, M. X., M. C. Christey, D. L. McNeil and K. M. Davies. 1999. Agrobacterium rhizogenes-mediated transformation of broccoli (Brassica oleracea L. var. italica) with an antisense 1-aminocyclopropane-1-carboxylic acid oxidase gene. Plant Sci. 143: 55-62.
Hoa, T. T., B. B. Bong, E. Huq and T. K. Hodges. 2002. Cre/lox sit-specific recombination controls the excision of a transgene from the rice genome. Thero. Appl. Genet. 104: 518-525.
Hofmann, C., P. Lhy R. Hter and V. Pliska 1988. Binding of the delta-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (pieris brassicae). Eur. J. Biochem..173: 85-91.
Hofte, H and H. R. Whiteley. 1989. Insecticidal crystal proteins of Baccillus thuringiensis. Microbiol. Rev. 53: 242-255.
Hou, B. K., Y. H. Zhou, L. H. Wan, Z. L. Zhang, G. F. Shen, Z. H. Chen and Z. M. Hu. 2003. Chloroplast transformation in oilseed rape. Transgenic Research 12: 111-114.
Kao, S. S., F. C. Hsieh, C. C. Tzeng and Y. S. Tsai. 2003. Cloning and expression of the insecticidal crystal protein gene cry1Ca9 of Bacillus thuringiensis G10-01A from Taiwan granaries. Curr Microbiol. 47: 295-299.
Kota, M., H. Daniell, S. Varma, S. F. Garczynski, F. Gould and W. J. Moar. 1999. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects. Proc. Natl. Acad. Sci. USA. 96: 1840-1845.
Kouskoura, T., C. Tickner and Crickmore, N. 2001. Expression and crystallization of an N-terminally activated from of the Bacillus thuringiensis Cry1Ca toxin. Curr Microbiol., 43: 371-373.
Lee, Y. H., K. H. Chung, H. U. Kim and Y. M. Jin. 2003. Induction of male sterile cabbage using a tapetum-specific promoter from Brassica campestris L. spp. Pekinensis. Plant Cell Rep. 22: 268-273.
Leneuve, P., S. Colnot, G. Hamard, F. Francis, M. Niwa-Kawakita, M. Giovannini and M. Holzenberger. 2003. Cre-mediated germiline mosaicism: a new transgenic mouse for the selective removal of residual markers fromtri-lox conditional alleles. Nucleic Acids Res. 31: e21.
Lereclus, D., A. Deleclus and M. M. Lecadet, 1993. Diversity of Bavillus thuringiensis toxins and genes. In P. Entwistle, J. S. Cory, M. J. Bailey, and S. Higgs. Bacillus thuringiensis, an environmental biopesticide: theory and practice, John Wiley and Sons, Ltd., Chichester, U.K. p.37-69.
Lim, H. T., H. J. Lee, E. J. Park and Y. N. Song. 2000. Factors influencing on the high efficient plant regeneration and genetic transformation in Brassica vegetable crops. 3rd ISHS International Symopsium on Brassicas-12th Crucifer Genetics Workshop (help at Horticulture Research International),Wellesbourne, cv 35 9EF, UK. 5th-9th,Sep., 2000.
Lin, C. H., M. L. Chang, C. C. Tzeng and J. L. Chen. 2002. Co-transformation of the synthetic cry1A(c) and wild-type cry1C genes encoding Bacillus thuringiensis endotoxins into tobacco and their bipartite expression effects on insecticidal efficacy. Plant Prot. Bull. 44: 209-232.
Lin, C. H., Y. Y. Chen, C. C. Tzeng, H. S. Tsay and L. J. Chen. 2003 .Expression of a Bacillus thuringiensis cry1C gene in plastid confers high insecticidal efficacy against tobacco cutworm a Spodoptera insect. Bot. Bull. Acad. Sin. 44: 199-210.
Lin, W. G., F. H. Jun, W. H. Xu, L. H. Yan and W. Y. Tang. 2002. Pathogen-resistant transgenic plant of Brassica pekinensis by transferring antibacterial peptide gene and its genetic stability. Acta Bot Sin. 44(8):951-955.
Liu, F., M. Q. Cao, L. Yao, Y. Li, C. Robaglia, C. Tourneur. 1998. In planta transformation of Pakchoi (Brassica campestris L. ssp. chinensis) by infiltration of adult plants with Agrobacterium. ISHS Acta Horticulturae. 476: 187-192. Ⅲ International Symopsium Diversification of Vegetable crops.
Lorence, A., A. Darszon, C. Diaz, A. Lievano, R. Quintero and A. Bravo 1995. Delta-endotoxins induce cation channels in planar lipid bilayers. FEBS Lett. 360: 217-222.
Maliga, P. 2002 Engineering the plastid genome of higher plants. Curr. Opin. Plant Biol. 5: 164-172.
Nour, K., D. Xu, J. Swenson, J. Zhang, T. Czapla, G. Schwab, S. Jayne, B. Stockhoff, K. Narva, H. Schnepf, S. Ernest, S. Stelman, C. Poutre, M. Koziel and N. Duck. 2001. Insecticidal proteins from bacillus thuringiensis protect corn from corn rootworms. Nat. Biotechnol. 19(7): 668-672.
Perlak, F. J., R. W. Deaton, T. A. Armstrong, R. L. Fuchs, S. R. Sims and D. A. Frischhoff. 1990. Insect resistant cotton plants. Bio/Technology 8: 939-943.
Perlak, F. J., T. B. Stone, Y. M. Muskopf, L. J. Peterson, G. B. Parker, S. A. McPherson, J. Wyman, S. Love, G. Reed, D. Biecer and D. A. Fishhoff. 1993. Genetically improved potates:protection from damage by Colorado potato beetles. Plant Mol. Bio. 22:313-321.
Rajamohan, F., J. A. Cotrill, F. Gould and D. H. Dean. 1996. Role of domainⅡ,loop 2 residues of Bacillus thuringiensis CryIAb delta-endotoxin in reversible and irreversible binding to Manduca sexta and Heliothis virescens. J. Biol. Chem. 271: 2390-2396.
Rammler, D. H., F. H. Gaertner and D. L. Edwards. 1994. Pseudomonas hosts transformed with Bacillus endotoxin genes. USA patent no. 5281532.
Reddy, V. S., S. Leelavathi, A. Selvapandiyan, R. Raman, F., V. Giovanni, R. Shukla and K. Bhatnagar. 2002. Analysis of Chloroplast transformed tobacco plant with cryIa5 under rice psbA transcriptional elements reveal high level expression of Bt toxim without imposing yield penalty and stable inheritance of transplastome. Mol Breed. 9: 259-269.
Shelton, A. M., J. Z. Zhao and R. T. Roush . 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47: 845-881.
Shin. B. S., S. S. H. Park, S. K. Choi, B. T. Koo, S. T. Lee and J. I. Kim. 1995. Distribution of cryV-type insecticidal protein genes in Bacillus thuringiensis and cloning of cryV-type gene from Bacillus thuringiensis subsp. Kurstaki and Bacillus thuringiensis subsp. Kurstaki and Bacillus thuringiensis subsp. entomosidus. Apple. Environ. Microbiol. 61: 2402-2407.
Smith, G. P and D. J. Ellar. 1994. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryIC δ-insecticidal specificity. Biochem. J. 302: 611-616.
Soares, G. G and T. C. Quick. 1992. MVP, a novel bioinsecticide for the control of diamondback moth, pp. 129-137. In: N. S. Talekar 〔ed.〕, Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop. AVRDC publication no. 92-368, December 10-14, 1990, Asian Vegetable Research and Development Center, Taiwan, ROC.
Srivastava, V and D. W. Ow. 2001. Single-copy primary transformants of maize obtained through the co-introduction of a recombinase-expressing construct. Plant Mol. Bio. 46: 561-566.
Stevens, S. E., Jr. Murphy, R. C. Lamoreaux, W. J and L. B. Coons, 1994. A genetically engineered mosquitocidal cyanobacterium. J. Appl. Phycol. 6: 187-197.
Su, N., Y. M. Wu, B. Y. Sun and G. F. Shen. 2001. A new way of plant genetic engineering chloroplast transformation. Biotechnology Information 4: 9-13.
Tu, J., G. Zhang, K. Datta, C. Xu, Y. He, Q. Zhang, G. S. Khush and S. K. Datta 2000. Field performance of transgenic elite commercial hybrid rice expressing bacillus thuringiensis delta-endotoxin. Nat. Biotechnol. 18(10): 1101-1104.
Van Rie, J., S. Jansens, D. Degheele, and H. Van Mellaert. 1990. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillua thuringiensis delta-endotoxins. Apple. Environ. Microbiol. 56: 1378-1385.
Xiang, Y., W. K. R. Wong, M. C. Ma. and R. S. C. Wong. 2001. Agrobacterium-mediated transformation of brassica campestris spp. Parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep. 19: 251-256.
Xu, X., L. Yu and Y. Wu. 2005. Disruption of a Cadherin Gene Associated with Resistance to Cry1Ac {delta}-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl Environ Microbiol. 71(2):948-54.
Yang, G. D., Z. Zhen, Y. E. Li, Z. J. Zhu, G. F. Xiao and X. L. Wei. 2002. Obtaining transgenic plants of Chinese cabbage resistant to pieris rapae L. with Modified CpTI gene. Acta Bot Sin. 29(3): 224-228.
Yang, Z. H., H. Jin, P. Plaha, B. T. Woong, G. B. Jiang, C. Woo, H. D. Ynu, Y. P. Lim and H. Y. Lee. 2004. An improved plant regeneration protocol using cotyledonary explants from inbred lin of Chinensis cabbage (Brassica rapa ssp. pekinensis). J. Plant Biotech. 6(4): 235-239.
Zhang, Z. L., Y. G. Ren, Y. X. Shen, S. Shan, G. C. Fan, X. F. Wu, K. X. Qian and G. F. Shen. 2000. Expression of Bacillus thuringiensis (Bt) crystal toxin gene in the chloroplast of tobacco. Acta Genet. Sinica 27: 270-277.
Zhao, J. Z., J. Cao, Y. X. Li, H. L. Collins, R. T. Roush, E. D. Earle and A. M. Shelton. 2003. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nat. Biotechnol. 21(12): 1493-1497.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top