參考文獻
一、 中文部分:
1. 李永鋒、王雪濤(2008),「基於GM(1,1)灰色系統的房地產市場預測模型研究」,河南教育學院學報(自然科學版) ,第17卷,第3期,頁21-22。
2. 吳錦碧(2002),「臺北市與高雄市成屋價格影響因素比較之研究」,朝陽科技大學企業管理系碩士論文。3. 林維垣(2000),「人工智慧在投資策略之應用」,臺北:華泰文化
事業。
4. 林左裕(2010),「不動產投資管理」,臺北:智勝文化事業。
5. 洪茂榮(2012),「合理房價的研究-以新北市為例」,國立成功大
學國際經營管理研究所碩士論文。
6. 洪築君(2012),「探討北高二市房價之影響因素」,國立雲林科技
大學財務金融系碩士論文。
7. 徐樅巍、鄭華、仇恒成(2008),「灰色預測模型在房地產投資預測中的應用」,《當代經濟》,第2期,頁106-108。
8. 陳政偉(2010),「新屋房價、中古屋房價與台灣加權股價、營建類
股價之關聯性分析」,國立屏東商業技術學院不動產經營系碩士論文。
9. 陳淑燕、王煒(2004),「交通量的灰色神經網絡預測方法」,東南大學學報,第34卷,第4期,頁541-544。
10. 陳力維(2001),「台灣房地產價格變動因素之研究」,淡江大學財
務金融學系碩士論文。
11. 粘縝(2011),「應用資料採礦與果蠅演算法建構財務危機預警模型
76
-以台灣上市櫃公司為例」,東吳大學經濟研究所碩士論文。
12. 張金鶚(1997),「房地產投資與決策分析-理論與實務」,二版,
臺北:華泰文化事業。
13. 張金鶚、陳明吉、鄧筱蓉(2008),「台北市房價泡沫知多少?--房價、租金、所得之關係與狀態空間模型之應用」,國立政治大學台灣房地產研究中心論文,頁1-24。
14. 張智星(2008),「MATLAB程式設計:進階篇」,臺北:鈦思科技。
15. 黃漢欽(2011),「影響台灣重要都市住宅房價的因素與房價指數之建置」,華夏技術學院資產物業管理研究所碩士論文。16. 彭建文、林秋瑾及楊雅婷(2004),「 房價結構性改變影響因素分析-以臺北市、臺北縣房價為例」,台灣土地研究,第7卷,第2期,頁27-46。
17. 蔡瓊星、吳漢雄、莊漢東(1997)。「灰色預測α係數調整及滾動建模之探討」,灰色系統理論與應用研討會。
18. 歐陽建濤(2005),非線性灰色預測模型在房地產投資價格中的應
用」,工業技術經濟,第24卷,第5期,頁78-80 。
19. 鄭聚龍(1993),「灰色控制系統」,武漢:華中理工大學出版社。
20. 鄭錦聰(2012),「MATLAB程式設計基礎篇」,四版,臺北:全華圖書。
21. 潘文超(2011),「一種新的演化式計算方法-果蠅最佳化演算法」,《數位科技與創新管理研討會》,頁382-391。
22. 潘文超(2011),「最新演化式計算技術-果蠅最佳化演算法」,臺
北:滄海書局。
23. 顏明輝(2010),「台灣整體房價指數與區域房價指數動態行為之探
討」,國立嘉義大學應用經濟學系研究所論文。
77
二、 英文部分:
1. Alvisi, S., and Franchini, M. (2012), “Grey Neural Networks for River Stage Forecasting with Uncertainty, ” Physics and Chemistry of the Earth, Parts A/B/C, vol. 42–44, pp. 108-118.
2. Bonnie, J. B. (1998), “The Dynamic Impact of Macroeconomic
Aggregates on Housing Prices and Stock of Houses: A National and Regional Analysis,” The Journal of Real Estate Finance and Economics, vol. 17, no. 2, pp. 179-197.
3. Bouchouicha, R., and Ftiti, Z. (2012), “Real Estate Markets and the Macroeconomy: A Dynamic Coherence Framework,” Economic Modelling, vol. 29, no. 5, pp. 1820-1829.
4. Chang, B. R., and Tsai, H. F. (2008), “Predicting Performance of Grey and Neural Network in Industrial Effluent using Online Monitoring Parameters, ” Expert Systems with Applications, vol. 34, no. 2, pp. 925-934.
5. Chen, S., Cowan, C. F. N., and Grant, P. M. (1991), “ Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks, ” IEEE Transactions on Neural Networks, vol. 2, no. 2, pp. 302–309.
6. Han, J., Wang, P., and Yang, X. (2012), “Tuning of PID Controller Based
on Fruit Fly Optimization Algorithm,” IEEE International Conference on Mechatronics and Automation (ICMA), pp. 409 – 413.
7. Johnes, G., and Hyclak, T. (1999), “House Prices and Regional Labor Markets,” The Annals of Regional Science, vol. 33, no. 1, pp. 33-49.
8. Li, H. Z., Guo, S., Li, C. J., and Sun, J. Q. (2013), “A Hybrid Annual
Power Load Forecasting Model Based on Generalized Regression Neural
78
Network with Fruit Fly Optimization Algorithm, ” Knowledge-Based Systems, vol. 37, pp. 378-387.
9. Lin, S. M. (2013), “Analysis of Service Satisfaction in Web Auction Logistics Service Using a Combination of Fruit Fly Optimization Algorithm and General Regression Neural Network,” Neural Computing and Applications, vol. 22, no. 3-4, pp. 783-791.
10. Pan, W. T. (2012), “A New Fruit Fly Optimization Algorithm: Taking the Financial Distress Model as an Example,” Knowledge-Based Systems, vol. 26, pp. 69-74.
11. Qin, X., and Donghyun, P. (2010), “Seoul Housing Prices and the Role of Speculation,” Empirical Economics, vol. 38, no. 3, pp. 619-644.
12. Rachlis, M. B., and Yezer, A. M. J. (1985), “Urban Location and Housing Price Appreciation,” Papers of the Regional Science Association, vol. 57, no. 1, pp. 155-164.
13. Tang, H. W. V., and Yin, M. S. (2012), “Forecasting Performance of
Grey Prediction for Education Expenditure and School Enrollment,” Economics of Education Review, vol. 31, no. 4, pp. 452-462.
14. Tang, N., Zhang, D. J. (2011), “Application of a Load Forecasting Model Based on Improved Grey Neural Network in the Smart Grid,” Energy Procedia, vol. 12, pp. 180-184.
15. Tsai, I. C., and Peng, C. W. (2011), “Bubbles in the Taiwan Housing Market: The Determinants and Effects,” Habitat International, vol. 35, no. 2, pp. 379-390.
16. Tu, C. S., Chang, C. T., Chen, K. K., and Lu, H. A. (2012),“A Study on Business Performance with the Combination of Z-Score and FOAGRNN
79
Hybrid Model,” African Journal of Business Management, vol. 6, no. 26, pp.7788-7798.
17. Wang, X. G., and Zou, Z. J. (2012), “Identification of Ship Manoeuvring Response Model Based on Fruit Fly Optimization Algorithm,” Dalian Haishi Daxue Xuebao/ Journal of Dalian Maritime University, vol. 38, no. 3, pp. 4-7.
18. Wasserman, P. D. (1993), Advanced Methods in Neural Computing . New York: Van Nostrand Reinhold.
19. Yu, H. (2010), “China’s House Price: Affected by Economic Fundamentals or Real Estate Policy?,” Frontiers of Economics in China, vol. 5, no. 1, pp. 25-51.
20. Zhang, P., Ma, W., and Zhang, T. (2012), “Application of Artificial
Neural Network to Predict Real Estate Investment in Qingdao, ” Future Communication, Computing, Control and Management, Lecture Notes in Electrical Engineering, vol. 141, pp. 213-219.
21. Zhang, Y. (2012), “Smith Predictor in the DDE Application,” Control and Decision Conference (CCDC), pp. 2346-2351.