跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/05 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪士偉
研究生(外文):Hung Shi-Wei
論文名稱:雙繞組永磁式無刷直流電動機驅動器之分析及研製
論文名稱(外文):Development and Analysis of a Dual-Winding Permanent-magnet Brushless DC Motor Drive
指導教授:黃仲欽
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
中文關鍵詞:永磁式無刷直流電動機雙繞組雙變流器雙通道脈波寬度調變交錯式非交錯式
外文關鍵詞:permanent-magnet brushless DC motordual-windingdual-inverterdual-channel pulse-width modulationinterleavednon-interleaved
相關次數:
  • 被引用被引用:6
  • 點閱點閱:743
  • 評分評分:
  • 下載下載:112
  • 收藏至我的研究室書目清單書目收藏:1
本文旨在分析、模擬、建模及實作雙繞組永磁式無刷直流電動機驅動器之新控制架構。本文利用Flux2D之有限元素法軟體分析永磁式無刷直流電動機之磁場分布及穩態特性,此外並考慮電動機特性受電樞反應下的評估,其中包括磁飽和及反電動勢畸變的現象。文中亦建立雙繞組永磁式無刷直流電動機及雙變流器之數學模型,並搭配本文所提出的雙通道脈波寬度調變訊號控制策略分析轉矩及電流,其中雙通道脈波寬度調變訊號控制策略又可分為非交錯式及交錯式。交錯式脈波寬度調變訊號並可降低轉矩抖動及電流漣波。此外本文所提出之永磁式無刷直流電動機採用雙繞組及雙變流器的硬體架構,配合雙通道脈波寬度調變訊號之控制策略,由分析及實驗結果顯示均可如預期的分擔系統之輸出功率及提升可靠度。
本文之系統採用單晶片微控器(H8/3672)作為控制核心以產生雙通道脈波寬度調變訊號,並建立低價位之雙變流器硬體架構,完成1 kW雙繞組結構之永磁式無刷直流電動機控制系統雛型,並提出模擬和實驗結果證明此架構之效益及特點。
This thesis is concerned with the analysis, simulation, modeling, and implementation of a new control strategy for dual-winding permanent-magnet brushless dc motor drive systems. The characteristics of the motor such as magnetic field distribution and steady-state property are analyzed by Flux2D using finite-element method. In addition, the magnetic saturation and back electromotive force distortion caused by armature reaction are also considered. Then the mathematical models of dual-winding permanent-magnet brushless dc motor and dual-inverter are built. Torque and current analyses for dual-channel pulse-width modulation with interleaved and non-interleaved control strategies are given. The result shows that the interleaved control will yield less torque fluctuation and current ripple. Besides, both analysis and experiment indicate that dual-winding permanent-magnet brushless dc motor with dual-inverter using dual-channel pulse-width modulation will share the output power and enhance system reliability as expected.
A single-chip microcomputer (H8/3672) is used to serve as the core controller. It generates the dual-channel pulse-width modulation signals to implement a 1 kW dual-winding permanent-magnet brushless dc motor with low-cost dual-inverter prototype drive system. Simulation and experimental results are given to justify the proposed control strategy.
目錄
中文摘要 …………………………………………………………….I
英文摘要 …………………………………………………………… II
誌 謝 …………………………………………………………...III
目 錄 …………………………………………………………...IV
符號索引 …………………………………………………………...VI
圖表索引 …………………………………………………………VIII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻探討 1
1.3 系統架構及貢獻 2
1.4 大綱 3
第二章 永磁式無刷直流電動機分析 4
2.1 前言 4
2.2 永磁式無刷直流電動機結構及磁路分析 4
2.3 電動機繞組分布及反電動勢分析 10
2.3.1 電動機繞組分布 10
2.3.2 反電動勢分析結果 11
2.4 電動機之電樞反應影響 14
2.5 性能評估及反電動勢實測 20
2.5.1 反電動勢實測 20
2.5.2 性能評估 21
2.6 結語 22
第三章 雙繞組永磁式無刷直流電動機驅動系統 23
3.1 前言 23
3.2 永磁式無刷直流電動機數學模型推導 23
3.3 系統架構 25
3.4 雙繞組控制策略 26
3.5 六步方波操作之控制策略及模擬 28
3.5.1 控制策略規劃 28
3.5.2 六步方波控制之變流器模式 33
3.6 模擬結果 38
3.7 結論 44
第四章 實體製作 45
4.1 前言 45
4.2 硬體電路之製作 45
4.3 軟體程式規劃 51
4.4 實測結果 55
4.5 結語 59
第五章 結論及未來研究方向 60
5.1 結論 60
5.2 未來研究方向 61
參考文獻 62
作者簡介 66
參考文獻
[1] Z. Q. Zhu, D. Howe, E. Bolte, and B. Ackermann, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field”, IEEE Transactions on Magnetics, vol. 29, pp. 124 -135, 1993.
[2] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors. II. Armature-reaction field”, IEEE Transactions on Magnetics, vol. 29, pp. 136 -142, 1993.
[3] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in brushless permanent magnet DC motors. III. Effect of stator slotting”, IEEE Transactions on Magnetics, vol. 29, pp. 143 -151, 1993.
[4] Z. Q. Zhu and D. Howe, “Instantaneous magnetic field distribution in permanent magnet brushless DC motors. IV. Magnetic field on load”, IEEE Transactions on Magnetics, vol. 29, pp. 152-158, 1993.
[5] A. B. Proca, A. Keyhani, A. El-Antably, W. Lu, and M. Dai, “Analytical model for permanent magnet motors with surface mounted magnets”, IEEE Transactions on Energy Conversion, vol. 18, pp. 386-391, 2003.
[6] Z. Q. Zhu and D. Howe, “Influence of design parameters on cogging torque in permanent magnet machines”, IEEE Transactions on Energy Conversion, vol. 15, pp. 407-412, 2000.
[7] C. Breton, J. Bartolome, J. A. Benito, G. Tassinario, I. Flotats, C.W. Lu, and B.J. Chalmers, “Influence of machine symmetry on reduction of cogging torque in permanent-magnet brushless motors”, IEEE Transactions on Magnetics, vol. 36, pp. 3819-3823, 2000.
[8] K. F. Rasmussen, J. H. Davies, T. J. E. Miller, M. I. McGelp, and M. Olaru, “Analytical and numerical computation of air-gap magnetic fields in brushless motors with surface permanent magnets”, IEEE Transactions on Industry Applications, vol. 36, pp. 1547 -1554, 2000.
[9] C. C. Hwang and Y. H. Cho, “Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors”, IEEE Transactions on Magnetics, vol. 37, pp. 3021 -3024, 2001.
[10] J. Li, T. Abdallah, and C. R. Sullivan, “Improved calculation of core loss with nonsinusoidal waveforms”, IEEE Conference record on Industry Applications, vol. 4, pp. 2203 -2210, 2001.
[11] Z. Q. Zhu, D.Howe, and C. C. Chan, “Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines”, IEEE Transactions on Magnetics, vol. 38, pp. 229 -238, 2002.
[12] G. R. Slemon, “On the design of high-performance surface-mounted PM motors”, IEEE Transactions on Industry Applications, vol. 30, pp. 134-140, 1994.
[13] Y. Wang, K. T. Chau, J. Gan, C. C. Chan, and J. Z. Jiang, “Design and analysis of a new multiphase polygonal-winding permanent-magnet brushless DC machine”, IEEE Transactions on Magnetics, vol. 38, pp. 3258-3260, 2002.
[14] T. Goplarathnam, S. Waikar, H. A. Toliyat, M. S. Arefeen, and J. C. Moreira, “Development of low cost multi-phase brushless DC (BLDC) motors with unipolar current excitations”, IEEE Conference Record of Industry Applications, vol. 1, pp. 173-179, 1999.
[15] S. Waikar, T. Goplarathnam, H. A. Toliyat, and J. C. Moreira, “Evaluation of multiphase brushless permanent magnet (BPM) motors using finite element method (FEM) and experiments”, IEEE Annual, Applied Power Electronics Conference and Exposition, vol. 1, pp. 396-402, 1999.
[16] T. Goplarathnam, H. A. Toliyat, and J. C. Moreira, “Multi-phase fault-tolerant brushless DC motor drives”, IEEE Conference Record of Industry Applications, vol. 3, pp. 1683-1688, 2000.
[17] P. Pillay and R. Krishnan, “Modeling of permanent magnet motor drives”, IEEE Transactions on Industrial Electronics, vol. 35, pp. 537-541, 1988.
[18] J. H. Seo, C. H. Choi, and D. S. Hyun, “Simulation of brushless DC drives”, IEE Proceedings B of Electric Power Applications, vol. 137, pp. 299-308, 1990.
[19] N. N. Franceschetti and M. G. Simoes, “A new approach for analysis, modeling and simulation of brushless multiphase machines”, IEEE Annual Conference, Industrial Electronics Society, IECON ''01, vol. 2, pp. 1423-1427, 2001.
[20] M. G. Simoes, N. N. Franceschetti, and P. Jr. Vieira, “Design and evaluation of a polyphase brushless DC-machine direct drive system”, IEEE Conference Record of Industry Applications, vol. 2, pp. 835-842, 2001.
[21] D. Patterson, and R. Spee, “The design and development of an axial flux permanent magnet brushless DC motor for wheel drive in a solar powered vehicle”, IEEE Transactions on Industry Applications, vol. 31, pp. 1054-1061, 1995.
[22] K. J. Tseng, and G. H. Chen, “Computer-aided design and analysis of direct-driven wheel motor drive”, IEEE Transactions on Power Electronics, vol. 12, pp. 517-527, 1997.
[23] J. Gan, K. T. Chau, C. C. Chan, and J. Z. Jiang, “A new surface-inset, permanent-magnet, brushless DC motor drive for electric vehicles”, IEEE Transactions on Magnetics, vol. 36, pp.3810-3818, 2000.
[24] T. F. Chan, L. T. Yan, and S. Y. Fang, “In-wheel permanent-magnet brushless DC motor drive for an electric bicycle”, IEEE Transactions on Energy Conversion, vol. 17, pp. 229-233, 2002.
[25] M. G. Simoes and P. Jr. Vieira, “A high-torque low-speed multiphase brushless machine-a perspective application for electric vehicles”, IEEE Transactions on Industrial Electronics, vol. 49, pp. 1154 -1164, 2002.
[26] J. H. Song, and I. Choy, “Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor”, IEEE Transactions on Power Electronics, vol. 19, pp. 312-319, 2004.
[27] Z. Q. Zhu, S. Bentouati, and D. Howe, “Control of single-phase permanent magnet brushless DC drives for high-speed applications”, IEE Conf. Publ. No. 475, pp. 327-332, 2000.
[28] B. K. Lee, T. H. Kim, and M. Ehsani, “On the feasibility of four-switch three-phase BLDC motor drives for low cost commercial applications: topology and control”, IEEE Transactions on Power Electronics, vol. 18, pp. 164-172, 2003.
[29] F. Z. Peng, G. J. Su, and L. M. Tolbert, “A passive soft-switching snubber for PWM inverters”, IEEE Transactions on Power Electronics, vol. 19, pp. 363-370, 2004.
[30] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, McGraw-Hill, 1994.
[31] D. C. Hanselman, Brushless Permanent-Magnet Motor Design Second Edition, Writers’ Collective, 2003.
[32] C. M. Ong, Dynamic Simulation of Electric Machinery, Prentice-Hill, 1998.
[33] Flux2D User’s guide, Cedrat, 1999.
[34] Hitachi Single-chip Microcomputer H8/3672 Series Hardware Manual, Renesas, 2001.
[35] Hitachi Microcomputer H8/300H Series Application Notes for CPU, Renesas, 2003.
[36] 劉昌煥,交流電機控制,東華書局,民國九十年。
[37] 視覺化建模環境 Simulink 入門與進階,鈦思科技股份有限公司,民國九十年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top