跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝世傑
研究生(外文):Shieh Shyh Jye
論文名稱:可感測敲擊器及訊號重疊方式在深鋼筋保護層厚度檢測上之應用
論文名稱(外文):Application of a sensible impactor and signal superposition to measuring the cover thickness of deep rebar
指導教授:林宜清林宜清引用關係
指導教授(外文):Yiching Lin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:111
中文關鍵詞:非破壞可感測敲擊器訊號重疊
外文關鍵詞:non-destructivesensible impactorsignal superposition
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
非破壞檢測方法中,敲擊式應力波法為工程品質及結構安全檢測上常見之項目,且發展己相當成熟。於現行之量測方法中,若所採用之敲擊器無感測波源發生時間之功能,則需藉由第一個訊號接收器之輔助,始可反推敲擊時間原點,達到檢測之目的。應用應力波方法檢測鋼筋保護層厚度時,第一接收器對點定位產生之誤差,對於保護層厚度量測準確度影響最大,且由間接式反推敲擊時間原點易產生誤差,故改良敲擊器為具有自感測敲擊時間原點之功能,確實在改善檢測精度有其必要性,而且可省去第一個訊號接收器,所以同時達到為節省人力的目的。
本研究利用可感測敲擊時間原點之敲擊器,應用於鋼筋保護層厚度之量測,藉以驗證可感測敲擊時間原點之敲擊器之使用,能提供較佳的檢測結果。經實驗證實,應用可感測敲擊時間原點之敲擊器,確實可以提高檢測精度。而由於其波形變化極為明顯,易於讀取對應時間,且直接得到敲擊時間原點,有利於發展自動判讀設備;而且,採用可感測敲擊時間原點之敲擊器,可以降低檢測人力與成本,又便於應用在空間不足的場所,大大提高其實務應用性及運用於現場鋼筋混凝土品質檢測之可行性。另外對於深鋼筋保護層厚度的量測,由於保護層厚度較深且檢測配置須較遠故有應力波能量不足的情形,此可利用訊號疊加的方式來克服,或改以較大之敲擊源來增加敲擊能量,在本研究中皆獲不錯的結果。
The method of stress wave is a nondestructive test method commonly used for evaluating construction quality and structural safety. The stress wave method is well developed at the present time. When an impacting device without the function of detecting the occurrence time of wave source is used, an additional signal receiver is needed to trace the start time of impact. In the application of the stress wave method to measuring the cover thickness of reinforcing bars in concrete, the placing error of the additional signal receiver largely affects the measuring accuracy and, in addition, the use of the additional receiver for tracing the start time of impact also yields some measurement errors. It is necessary to improve the knocking device to have the function of self-detecting the start time of impact in order to improve testing accuracy. The use of the sensible impactor will save some manpower during tests because the additional signal receiver is no longer needed.
The impacting device able to detect the start time of impact was used in this study to measure the cover thickness of reinforcing bars in concrete. The experimental results indicate that the use of such an impacting device provides better and more accurate results than those obtained from the tests with conventional impacting device. The impacting device will offer improvement in practical applications because the output of the device has a sharp rising waveform that makes the identification of the start time of impact easy. In addition, the use of the improved impacting device can reduce manpower requirement and it is also convenient to operate in limited space. As for measuring deep reinforcing bars, the energy of stress wave will not be enough due to a longer travel path is needed. In this thesis, a technique called signal superposition was used to overcome the problem.
總目錄
中文摘要 Ⅰ
英文摘要 Ⅱ
總目錄 Ⅳ
本文目錄 Ⅳ
表目錄 Ⅵ
圖目錄 Ⅶ
照片目錄 ⅩII

本文目錄
第一章 緒論……………………………………………………………1
第二章 混凝土結構鋼筋保護層厚度檢測方法文獻回顧……………4
2-1檢測方法回顧……………………………………………………4
2-1-1 電磁波法……………………………………………………4
2-1-2 磁電法………………………………………………………8
2-1-3 敲擊回音法………………………………………………10
2-1-4 應力波折射法……………………………………………...14
2-2 研究動機………………………………………………………...19
第三章 試體規劃製作及儀器設備……………………………………21
3-1 試體規劃製作…………………………………………………...21
3-2儀器設備…………………………………………………………22
3-2-1主要元件…………………………………………………….23
3-2-2可感測敲擊時間原點之敲擊器…………………………….24
第四章 鋼筋保護層厚度量測………………………………………..27
4-1 試驗方法………………………………………………………...27
4-1-1 波速量測…………………………………………………...30
4-2傳統雙接收器……………………………………………………32
4-2-1 波速量測…………………………………………………...32
4-2-2 鋼筋保護層厚度量測……………………………………...36
4-3可感測敲擊時間原點敲擊器配合單一接收器…………………39
4-3-1可感測敲擊器檢測原理……………………………….…….39
4-3-2 波速量測……………………………………………….……40
4-3-3 鋼筋保護層厚度量測…………………………………….…42
4-4訊號重疊方法在鋼筋保護層厚度檢測上之應用………45
4-4-1波速量測……………………………………………………..45
4-4-2試體鋼筋保護層厚度量測…………………………….…….46
4-5磁電法鋼筋保護層厚度檢測結果…………………..…….49
4-6試驗結果討論…………………………………………….………50
第五章 結論與未來展望…………………..…………………………52
5-1 結論……………………………………..……………………….52
5-2未來展望…………………………...…………………………….53
參考文獻…………………………………………………………..……55

表目錄
表3-1現場澆置混凝土(非預力)鋼筋之最小保護層厚度……….…....59
表4-1傳統雙接收器量測R波波速之檢測結果……………….……...60
表4-2傳統雙接收器量測P波波速之檢測結果………….…..………..60
表4-3傳統雙接收器量測試體鋼筋保護層厚度之檢測結果…………60
表4-4可感測敲擊時間原點敲擊器配合單一接收器量測
P波波速之檢測結果…………....…….…………………….….61
表4-5可感測敲擊時間原點敲擊器配合單一接收器量測
試體鋼筋保護層厚度之檢測結果…………..……..………..…61
表4-6鋼珠(ψ3mm)敲擊源疊加作用量測單根鋼筋埋設
深度(ds=0.144m)……………………….…………...…...62
表4-7鋼珠(ψ5mm)敲擊源疊加作用量測單根鋼筋埋設
深度(ds=0.144m)………………………...………………62
表4-8 磁電法量測鋼筋保護層厚度……………...…….……………..63

圖目錄
圖2-1電磁波在遭遇到不同材質介面的反射示意圖…………….….64
圖2-2電磁波法試驗結果…………………………………….……….65
圖2-3 電磁波法所能辨識鋼筋位置之最小排列間距
(摘自Bungey et al.,1994)……………………………………….66
圖2-4 磁阻式鋼筋掃瞄儀器…………………..….…..…………….…67
圖2-5 艾第電流式鋼筋掃瞄儀器…………..………..……...………...68
圖2-6 磁阻式之鋼筋探測試驗儀器……………..……..…..…………68
圖2-7 鋼筋排列疏時…………………..………..……………………..69
圖2-8 鋼筋排列緊密時…………………………………………..……70
圖2-9 混凝土後接聲阻係數較大之介質(Z2>Z1) ………………...….71
圖2-10混凝土後接聲阻係數較小之介質(Z2<Z1) ……………….…..72
圖2-11敲擊回音法量測鋼筋保護層厚度試驗圖……………………..72圖2-12波傳動示意圖…………....…………..……………….….……..73
圖2-13 Snell’s Law示意圖………………………………………..……73
圖2-14波傳動反射以及折射示意圖………..…………….……...……73
圖2-15應力波遭遇鋼筋時波傳遞示意圖………………….…………74
(a)應力波導入測試物體
(b)壓力波遇鋼筋全折射後延鋼筋方向傳播
(c)壓力波折射出鋼筋
圖2-16應力波由敲擊源至訊號接收器之兩種路徑可能圖…………..75
圖3-1 試體規劃示意圖…………………………..……..………….….76
(a)側視圖
(b)頂視圖
圖3-2 實驗儀器……………………………………….…………..…...77
(a)傳統雙接收器之儀器配置
(b)可感測敲擊時間原點之敲擊器,配合單一接收器之儀器配

圖3-3 可感測敲擊時間原點之敲擊器………..………………...…….78
(a)壓電材料
(b)敲擊源鋼珠
(c)成品圖
圖3-4 鋼筋掃描儀……………..………….……………………...……79
圖4-1 鋼筋保護層厚度量測之試驗配置以及波傳路徑圖………......80
圖4-2 ASTM C1383波速量測方法配置示意圖………................……80
圖4-3 鋼筋保護層厚度量測……………………..……..……….…….81
(a)第一接收器所記錄之位移波形
(b)第二接收器所記錄之位移波形
圖4-4 表面R、表面P波速量測……………………..…………….…82
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.044m)
圖4-5 表面R、表面P波速量測…………………………...…………83
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.065m)
圖4-6 表面R、表面P波速量測………………………………...……84
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.085m)
圖4-7 表面R、表面P波速量測………………………………………85
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.105m)
圖4-8 鋼筋保護層厚度量測(ds=0.044m)………….………86
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形
圖4-9 鋼筋保護層厚度量測(ds=0.065m)…………………..…..…..87
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形
圖4-10鋼筋保護層厚度量測(ds=0.085m)……………………………88
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形
圖4-11鋼筋保護層厚度量測(ds=0.105m)…………………………....89
(a)試驗示意圖
(b)第一接收器接收之位移波形
(c)第二接收器接收之位移波形
圖4-12可感測敲擊器搭配一接收器量測鋼筋保護層厚度
之試驗配置以及波傳路徑圖……………………....………….90
圖4-13可感測敲擊器搭配一接收器量測鋼筋保護層厚度……..……91
(a)可感測敲擊器之位移波形
(b)接收器所記錄之位移波形
圖4-14表面P波速量測(可感測敲擊時間原點敲擊器)…………..….92
(a)試驗示意圖
(b) 鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.044m)
圖4-15表面P波速量測(可感測敲擊時間原點敲擊器)…………..….93
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.065m)
圖4-16表面P波速量測(可感測敲擊時間原點敲擊器)………….…..94
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.085m)
圖4-17表面P波速量測(可感測敲擊時間原點敲擊器)………….…95
(a)試驗示意圖
(b) 鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.105m)
圖4-18鋼筋保護層厚度量測(ds=0.044m)…………..………………..96
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形
圖4-19鋼筋保護層厚度量測(ds=0.065m)……………………………97
(a)試驗示意圖
(b) 鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形
圖4-20鋼筋保護層厚度量測(ds=0.085m)……………………...…….98
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形
圖4-21鋼筋保護層厚度量測(ds=0.105m)……………………………99
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形
圖4-22表面P波速量測(可感測敲擊時間原點敲擊器)………...…..100
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形(保護層厚度ds=0.144m)
圖4-23保護層厚度量測試驗(可感測敲擊時間原點敲擊器)………101
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形;
(c)第二接收器接收之位移波形(d=0.144m)
圖4-24第一次疊加之訊號波形(d=0.144m)……………….....………102
圖4-25第二次疊加之訊號波形(d=0.144m)………………..…….…..102
圖4-26第三次疊加之訊號波形(d=0.144m)………………..…….…..103
圖4-27第四次疊加之訊號波形(d=0.144m)………………..……..….103
圖4-28第五次疊加之訊號波形(d=0.144m)………………….....……104
圖4-29第六次疊加之訊號波形(d=0.144m)……………………....….104
圖4-30保護層厚度量測試驗(可感測敲擊時間原點敲擊器)…...….105
(a)試驗示意圖
(b)鋼珠內建感應元件裝置記錄之位移波形
(c)第二接收器接收之位移波形(d=0.144m)
圖4-31第一次疊加之訊號波形(d=0.144m)…….……..……………..106
圖4-32第二次疊加之訊號波形(d=0.144m)….…………..….……….106
圖4-33第三次疊加之訊號波形(d=0.144m)……...……………….….107
圖4-34第四次疊加之訊號波形(d=0.144m)….…..…………….…….107

照片目錄
照片1傳統雙接收器試驗情形………………………………...……..108
照片2傳統雙接收器試驗情形……………………………………….108
照片3可感測敲擊器搭配單一接收器試驗情形…………………….109
照片4可感測敲擊器搭配單一接收器試驗情形…………………….109
照片5鋼筋掃瞄儀試驗情形(小探頭)…………….…………………110
照片6鋼筋掃瞄儀試驗情形(大探頭)…………………………….....111
1.蕭家孟, 1999, "以應力波檢測混凝土內部鋼筋保護層厚度之研究",國立中興大學博士論文
2.林宜清,「混凝土結構品質檢測用之鋼珠敲擊組件」, 中華民國專利(號碼:167363)。
3.Bungey, J.H., and Millard, S.G., 1993. "Radar Inspection of Structure, " Proceedings, Institute of Civil Engineers. Structures and Buildings Journal (London), V.99, May, pp. 173-186
4.Bungey, J.H.; Millard, S.G.; and Shaw, M.R., 1993. " The Influence of Reinforcing Steel on Radar Surveys of Structural Concrete," Construction and Building Materials, V8.8, No.2, pp.119-126
5.Cantor, T.R. 1984. "Review of Penetrating Radar as Applied to Nondestructive Evaluation of Concrete, " In Situ/Nondestructive Testing of Concret, V.M. Malhotra, ed., ACI SP-82, American Concret Institute, Farmington Hills, Mich., pp.581-601
6.Lord, W., 1985."Electromagnetic Methods of Nondestructive Testing, " Vol. 3, Gordon and Breach, New York.
7.Lauer, K.R., 1991. "Magnetic/Electrical Methods, " Chapter 9 in Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. Carino, Eds., CRC Press, Boca Raton, FL, pp. 203-225.
8.Carino, N.J., 1992. "Performance of Electromagnetic Covermeters for Nondestructive Assessment of Steel Reinforcement, " NISTIR 4988, National Institute of Standards and Technology, September, 130pp.
9.ACI Committee 228.2R-98. " Nondestructive Test Method for Evaluation of Concrete in Structures".
10.Sansalone, M., Carino, N.J., and Hsu, N.N., 1987. "A Finite Element Study of the Interaction of Transient Stress Waves with Planar Flaws," NBS Journal of Research, July/August, pp. 279-290.
11.Carino, N.J., Sansalone, M., and Hsu, N.N., "Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms, 1986." International Advances in Nondestructive Testing, 12th Edition, W.J. McGonnagle, Ed., Gordon & Breach Science Publishers, New York, pp. 117-146.
12.Sansalone, M., Carino, N.J., and Hsu, N.N., 1987."A Finite Element Study of the Interaction of Transient Stress Waves with Planar Flaws," NBS Journal of Research, July/August, 1987, pp. 279-290.
13.Sansalone, M., and Carino, N.J., 1986. "Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves," NBSIR 86-3452, National Bureau of Standards, Gaithersburg, Maryland, Sept., 1986, 222 pp.
14.Sanalone, M., and Carino, N.J., 1988. "Detecting Honeycombing, the Depth of Surface-opening Cracks, and Ungrouted Ducts Using the Impact-Echo Method," Concrete International, April, pp. 38-46.
15.Sansalone, M., and Carino, N.J., 1987."The Transient Impact Response of Thick Circular Plates," NBS Journal of Research, November/December, pp. 355-367.
16.Sansalone, M., and Carino, N.J., 1987."The Transient Impact Response of Plates Containing Disk-shaped Flaws," NBS Journal of Research, November/December, pp. 369-381.
17.Sansalone, M., Carino, N.J., and Hsu, N.N., 1987."A Finite Element Study of Transient Wave Propagation in Plates," NBS Journal of Research, July/August, pp. 267-278.
18.Sansalone, M., Carino, N.J., and Hsu, N.N., 1987."A Finite Element Study of the Interaction of Transient Stress Waves with Planar Flaws," NBS Journal of Research, July/August, pp. 279-290.
19.Sansalone, M., and Carino, N.J., 1986."Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves," NBSIR 86-3452, National Bureau of Standards, Gaithersburg, Maryland, Sept., 222 pp.
20.Carino, N.J., Sansalone, M., and Hsu, N.N., 1986."Flaw Detection in Concrete by Frequency Spectrum Analysis of Impact-Echo Waveforms," International Advances in Nondestructive Testing, 12th Edition, W.J. McGonnagle, Ed., Gordon & Breach Science Publishers, New York, pp. 117-146.
21.Cheng, C. and Sansalone, M., 1993a, "The Effects of Steel Bars and Cracking Around Bars on Impact-Echo Signals", Materials Journal of the American Concrete Institute, Vol.90, No.5 (September-October)
22.Lin, Y., Cheng, C.C., Hsiao, C., US Patent No. 6,029,521, (2000), "Mehtod for Measuring Cover Thickness of Reinforcing Bar in Concrete by Using Stress Wave".
23.林宜清, 1997, “混凝土內部鋼筋對裂縫深度檢測之影響”, 行政院國科會專題研究計畫成果報告 NSC 86-2621-P-005-007
24.Proctor, T., 1982."Some Details of the NBS Conical Transducer," Journal of Acoustic Emission, Vol. 1., No. 3, pp. 173-178.
25.李盈萩,(2003) 「應用可感測敲擊時間原點之敲擊珠量測混凝土裂縫及厚度」,國立中興大學土木工程研究所碩士論文。
26.ASTM C1383 (1998), "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method," Annual Book of ASTM Standards, Vol. 04.02.
27.Sansalone, M., J.M. Lin, and Street, W.B., 1997, "A Procedure for determining P-Wave Speed in Concrete for Use in Impact-Echo Testing Using a P-wave Speed Measurement Technique" Materials Journal of the American Concrete Institute, Vol.94, No.6 November-December, pp.531-539.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top