跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/07 15:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鮑冠全
研究生(外文):Kuan-Chuan Pao
論文名稱:設計與合成新穎喹唑啉衍生物當作致癌蛋白CIP2A切除劑
論文名稱(外文):Design and Synthesis of Novel Quinazoline Derivatives as CIP2A-Ablating Agents
指導教授:蕭崇瑋
指導教授(外文):Chung-Wai Shiau
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生物藥學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:163
外文關鍵詞:QuinazolineCIP2ACIP2A-Ablating Agents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
CIP2A (cancerous inhibitor of PP2A)是近年來新發現的致癌蛋白;它可以藉由抑制PP2A (protein phosphatase 2 A) 促使c-Myc去磷酸化的作用,穩定了c-Myc在細胞中的表現,而促使細胞非貼附性生長及體內腫瘤的形成。臨床上,CIP2A在許多腫瘤中都有過量表現的趨勢;包括了頭頸癌、結腸癌、乳癌、子宮頸癌、前列腺癌、和血癌等等。
近年來的研究指出,許多小分子藥物,例如Velcade和Tarceva,擁有可以降低CIP2A表現且促使癌細胞死亡的能力。我們成功的利用Tarceva之化學結構---喹唑啉(quinazoline),開發出一系列具有抑制CIP2A表現及肝癌細胞株生長並且不會抑制EGFR的單、雙取代喹唑啉衍生物;其中,雙取代喹唑啉衍生物相對於單取代喹唑啉衍生物而言,擁有較佳的生物活性。化合物對於癌細胞生長的抑制與CIP2A和p-Akt之間更具有高度的關聯。從結構活性關係分析可得知,喹唑啉上二號碳位置的取代基對於化合物抑制CIP2A表現的能力扮演關鍵性的角色。因此,針對CIP2A切除劑的發展,喹唑啉化學結構式的確是一個具有高度潛力的基本骨架,更有機會能發展成新一代的標靶抗癌小分子藥物。.



Cancerous inhibitor of PP2A (CIP2A) is a novel oncoprotein which could stabilize the c-Myc by inhibiting PP2A (protein phosphatase 2 A) activity toward c-Myc and promoting anchorage-independent cell growth and in vivo tumor formation. Particularly, overexpression of CIP2A on several solid- and non-solid tumors has been recorded on document, including human neck and head carcinomas, colon, breast, cervical, prostate cancer, and acute leukemia.
Recent studies have shown that small molecules, such as Velcade and Tarceva, exhibited the ability to downregulate the expression of CIP2A and induce cell death. Based on the scaffold of Tarceva, we developed a series of mono- and di-substituted quinazoline and pyrimidine derivatives which have no EGFR inhibition. However, these molecules maintain the abilities to downregulate CIP2A in hepatocellular carcinoma cells. Di-substituted quinazoline derivatives showed more potent antiproliferative effect on HCC cells than mono-substituted quinazoline derivatives. Furthermore, downregulation of CIP2A by these molecules is correlated with cell proliferation; meanwhile, pAkt, the downstream signaling protein of CIP2A, was also been abolished. In summary, the substitution at 2’ position of quinazoline increase the bioactivity to against HCC. Therefore, this quinazoline structure is the great scaffold for synthesizing novel CIP2A ablating agents.

English Abstract i
Chinese Abstract ii
Acknowledgement iii
Contents v
1. Introduction 1
1.1 Research purpose 1
1.2 CIP2A (Cancerous Inhibitor of PP2A) 2
1.3 Erlotinib ( Tarceva) 6
2. Aims 10
2.1 Aim1: To develop the compounds with CIP2A-ablating ability but without EGFR inhibition ability 10
2.2 Aim2: The bioactivity test of qunazoline derivatives 12
2.3 Aim3: Establish the structure activity relationship (SAR) of quinazoline derivatives 12
3. Result 12
3.1 Chemical Synthesis 12
3.1 Bioactivity Test of Tarceva Derivatives 21
3.2.1 The CIP2A-ablating agents, TD-1, lacks EGFR kinase activity inhibition 21
3.2.2 Structure activity relationship of mono-substitued quinazolines 22
3.2.3 Structure activity relationship of mono-substituted and di-substituted pyrimidines 23
3.2.4 Structure activity relationship of di-substituted quinazolines 24
3.2.5 Structure activity relationship of C6 and C7 hetrocycle-replacemnt quinazolines 25
3.2.6 Structure activity relationship of HDAC inhibition and CIP2A ablation dual functional compounds 26
3.2.7 Mechanistic validation of the mode of action of 26
4. Discussion 37
4.1 The chemical modification problems of Tarceva Derivatives 37
4.1 The further discuss of SAR between quinazoine derivatives and CIP2A 39
5. Conclusion 39
6. Reference 40
7. Experiment Section 44
7.1 Materials 44
7.2 Chemical synthesis and the NMR data 46
7.2.1. General procedure for the synthesis of TD-1~10 46
7.2.2. General procedure for the synthesis of TD-11~17 49
7.2.3. General procedure for the synthesis of TD-18~31 52
7.2.4. General procedure for the synthesis of benzenesulfonamide 64
8. 1H &; 13C NMR spectra 69
1. Soo Hoo, L.; Zhang, J. Y.; Chan, E. K., Cloning and characterization of a novel 90 kDa 'companion' auto-antigen of p62 overexpressed in cancer. Oncogene 2002, 21 (32), 5006-15.
2. Junttila, M. R.; Puustinen, P.; Niemela, M.; Ahola, R.; Arnold, H.; Bottzauw, T.; Ala-aho, R.; Nielsen, C.; Ivaska, J.; Taya, Y.; Lu, S. L.; Lin, S.; Chan, E. K.; Wang, X. J.; Grenman, R.; Kast, J.; Kallunki, T.; Sears, R.; Kahari, V. M.; Westermarck, J., CIP2A inhibits PP2A in human malignancies. Cell 2007, 130 (1), 51-62.
3. Li, W.; Ge, Z.; Liu, C.; Liu, Z.; Bjorkholm, M.; Jia, J.; Xu, D., CIP2A is overexpressed in gastric cancer and its depletion leads to impaired clonogenicity, senescence, or differentiation of tumor cells. Clin Cancer Res 2008, 14 (12), 3722-8.
4. Khanna, A.; Bockelman, C.; Hemmes, A.; Junttila, M. R.; Wiksten, J. P.; Lundin, M.; Junnila, S.; Murphy, D. J.; Evan, G. I.; Haglund, C.; Westermarck, J.; Ristimaki, A., MYC-dependent regulation and prognostic role of CIP2A in gastric cancer. J Natl Cancer Inst 2009, 101 (11), 793-805.
5. Come, C.; Laine, A.; Chanrion, M.; Edgren, H.; Mattila, E.; Liu, X.; Jonkers, J.; Ivaska, J.; Isola, J.; Darbon, J. M.; Kallioniemi, O.; Thezenas, S.; Westermarck, J., CIP2A is associated with human breast cancer aggressivity. Clin Cancer Res 2009, 15 (16), 5092-100.
6. Huang, L. P.; Adelson, M. E.; Mordechai, E.; Trama, J. P., CIP2A expression is elevated in cervical cancer. Cancer biomarkers : section A of Disease markers 2010, 8 (6), 309-17.
7. Liu, J.; Wang, X.; Zhou, G.; Wang, H.; Xiang, L.; Cheng, Y.; Liu, W.; Wang, Y.; Jia, J.; Zhao, W., Cancerous inhibitor of protein phosphatase 2A is overexpressed in cervical cancer and upregulated by human papillomavirus 16 E7 oncoprotein. Gynecologic oncology 2011, 122 (2), 430-6.
8. Basile, J. R.; Czerninski, R., The role of CIP2A in oral squamous cell carcinoma. Cancer Biol Ther 2010, 10 (7), 700-2.
9. Vaarala, M. H.; Vaisanen, M. R.; Ristimaki, A., CIP2A expression is increased in prostate cancer. J Exp Clin Cancer Res 2010, 29, 136.
10. Dong, Q. Z.; Wang, Y.; Dong, X. J.; Li, Z. X.; Tang, Z. P.; Cui, Q. Z.; Wang, E. H., CIP2A is Overexpressed in Non-Small Cell Lung Cancer and Correlates with Poor Prognosis. Ann Surg Oncol 2011, 18 (3), 857-65.
11. Ren, J.; Li, W.; Yan, L.; Jiao, W.; Tian, S.; Li, D.; Tang, Y.; Gu, G.; Liu, H.; Xu, Z., Expression of CIP2A in renal cell carcinomas correlates with tumour invasion, metastasis and patients' survival. Br J Cancer 2011, 105 (12), 1905-11.
12. Wang, J.; Li, W.; Li, L.; Yu, X.; Jia, J.; Chen, C., CIP2A is over-expressed in acute myeloid leukaemia and associated with HL60 cells proliferation and differentiation. Int J Lab Hematol 2011, 33 (3), 290-98.
13. Bockelman, C.; Hagstrom, J.; Makinen, L. K.; Keski-Santti, H.; Hayry, V.; Lundin, J.; Atula, T.; Ristimaki, A.; Haglund, C., High CIP2A immunoreactivity is an independent prognostic indicator in early-stage tongue cancer. Br J Cancer 2011, 104 (12), 1890-5.
14. Bockelman, C.; Lassus, H.; Hemmes, A.; Leminen, A.; Westermarck, J.; Haglund, C.; Butzow, R.; Ristimaki, A., Prognostic role of CIP2A expression in serous ovarian cancer. Br J Cancer 2011, 105 (7), 989-95.
15. Bockelman, C.; Koskensalo, S.; Hagstrom, J.; Lundin, M.; Ristimaki, A.; Haglund, C., CIP2A overexpression is associated with c-Myc expression in colorectal cancer. Cancer Biol Ther 2012, 13 (5), 289-95.
16. Huang, P.; Qiu, J.; You, J.; Hong, J.; Li, B.; Zhou, K.; Chen, G.; Yuan, Y.; Zou, R., Expression and prognostic significance of CIP2A mRNA in hepatocellular carcinoma and nontumoral liver tissues. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals 2012.
17. Qu, W.; Li, W.; Wei, L.; Xing, L.; Wang, X.; Yu, J., CIP2A is overexpressed in esophageal squamous cell carcinoma. Med Oncol 2012, 29 (1), 113-8.
18. Ventela, S.; Come, C.; Makela, J. A.; Hobbs, R. M.; Mannermaa, L.; Kallajoki, M.; Chan, E. K.; Pandolfi, P. P.; Toppari, J.; Westermarck, J., CIP2A promotes proliferation of spermatogonial progenitor cells and spermatogenesis in mice. PLoS One 2012, 7 (3), e33209.
19. Janssens, V.; Goris, J., Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. The Biochemical journal 2001, 353 (Pt 3), 417-39.
20. Moule, M. G.; Collins, C. H.; McCormick, F.; Fried, M., Role for PP2A in ARF signaling to p53. Proc Natl Acad Sci U S A 2004, 101 (39), 14063-6.
21. Cole, M. D.; Nikiforov, M. A., Transcriptional activation by the Myc oncoprotein. Current topics in microbiology and immunology 2006, 302, 33-50.
22. Junttila, M. R.; Westermarck, J., Mechanisms of MYC stabilization in human malignancies. Cell Cycle 2008, 7 (5), 592-6.
23. Chen, K. F.; Liu, C. Y.; Lin, Y. C.; Yu, H. C.; Liu, T. H.; Hou, D. R.; Chen, P. J.; Cheng, A. L., CIP2A mediates effects of bortezomib on phospho-Akt and apoptosis in hepatocellular carcinoma cells. Oncogene 2010, 29 (47), 6257-66.
24. Krishnamurty, R.; Maly, D. J., Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. ACS chemical biology 2010, 5 (1), 121-38.
25. Stamos, J.; Sliwkowski, M. X.; Eigenbrot, C., Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. The Journal of biological chemistry 2002, 277 (48), 46265-72.
26. Pierce, A. C.; Sandretto, K. L.; Bemis, G. W., Kinase inhibitors and the case for CH...O hydrogen bonds in protein-ligand binding. Proteins 2002, 49 (4), 567-76.
27. Gazit, A.; Chen, J.; App, H.; McMahon, G.; Hirth, P.; Chen, I.; Levitzki, A., Tyrphostins IV--highly potent inhibitors of EGF receptor kinase. Structure-activity relationship study of 4-anilidoquinazolines. Bioorg Med Chem 1996, 4 (8), 1203-7.
28. Rachid, Z.; Brahimi, F.; Katsoulas, A.; Teoh, N.; Jean-Claude, B. J., The combi-targeting concept: chemical dissection of the dual targeting properties of a series of "combi-triazenes". J Med Chem 2003, 46 (20), 4313-21.
29. Liu, F.; Chen, X.; Allali-Hassani, A.; Quinn, A. M.; Wigle, T. J.; Wasney, G. A.; Dong, A.; Senisterra, G.; Chau, I.; Siarheyeva, A.; Norris, J. L.; Kireev, D. B.; Jadhav, A.; Herold, J. M.; Janzen, W. P.; Arrowsmith, C. H.; Frye, S. V.; Brown, P. J.; Simeonov, A.; Vedadi, M.; Jin, J., Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J Med Chem 2010, 53 (15), 5844-57.
30. Wagner, J.; von Matt, P.; Sedrani, R.; Albert, R.; Cooke, N.; Ehrhardt, C.; Geiser, M.; Rummel, G.; Stark, W.; Strauss, A.; Cowan-Jacob, S. W.; Beerli, C.; Weckbecker, G.; Evenou, J. P.; Zenke, G.; Cottens, S., Discovery of 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione (AEB071), a potent and selective inhibitor of protein kinase C isotypes. J Med Chem 2009, 52 (20), 6193-6.
31. Smits, R. A.; de Esch, I. J.; Zuiderveld, O. P.; Broeker, J.; Sansuk, K.; Guaita, E.; Coruzzi, G.; Adami, M.; Haaksma, E.; Leurs, R., Discovery of quinazolines as histamine H4 receptor inverse agonists using a scaffold hopping approach. J Med Chem 2008, 51 (24), 7855-65.
32. Caldwell, J. J.; Welsh, E. J.; Matijssen, C.; Anderson, V. E.; Antoni, L.; Boxall, K.; Urban, F.; Hayes, A.; Raynaud, F. I.; Rigoreau, L. J.; Raynham, T.; Aherne, G. W.; Pearl, L. H.; Oliver, A. W.; Garrett, M. D.; Collins, I., Structure-based design of potent and selective 2-(quinazolin-2-yl)phenol inhibitors of checkpoint kinase 2. J Med Chem 2011, 54 (2), 580-90.
33. Thorat, D. A.; Doddareddy, M. R.; Seo, S. H.; Hong, T. J.; Cho, Y. S.; Hahn, J. S.; Pae, A. N., Synthesis and biological evaluation of 2,4-diaminoquinazoline derivatives as novel heat shock protein 90 inhibitors. Bioorg Med Chem Lett 2011, 21 (6), 1593-7.
34. van Muijlwijk-Koezen, J. E.; Timmerman, H.; van der Goot, H.; Menge, W. M.; Frijtag Von Drabbe Kunzel, J.; de Groote, M.; AP, I. J., Isoquinoline and quinazoline urea analogues as antagonists for the human adenosine A(3) receptor. J Med Chem 2000, 43 (11), 2227-38.
35. Hattori, K.; Kido, Y.; Yamamoto, H.; Ishida, J.; Kamijo, K.; Murano, K.; Ohkubo, M.; Kinoshita, T.; Iwashita, A.; Mihara, K.; Yamazaki, S.; Matsuoka, N.; Teramura, Y.; Miyake, H., Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase. J Med Chem 2004, 47 (17), 4151-4.
36. Cai, X.; Zhai, H. X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C. J.; Bao, R.; Qian, C., Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem 2010, 53 (5), 2000-9.
37. Sirisoma, N.; Kasibhatla, S.; Pervin, A.; Zhang, H.; Jiang, S.; Willardsen, J. A.; Anderson, M. B.; Baichwal, V.; Mather, G. G.; Jessing, K.; Hussain, R.; Hoang, K.; Pleiman, C. M.; Tseng, B.; Drewe, J.; Cai, S. X., Discovery of 2-chloro-N-(4-methoxyphenyl)-N-methylquinazolin-4-amine (EP128265, MPI-0441138) as a potent inducer of apoptosis with high in vivo activity. J Med Chem 2008, 51 (15), 4771-9.
38. Aliagas-Martin, I.; Burdick, D.; Corson, L.; Dotson, J.; Drummond, J.; Fields, C.; Huang, O. W.; Hunsaker, T.; Kleinheinz, T.; Krueger, E.; Liang, J.; Moffat, J.; Phillips, G.; Pulk, R.; Rawson, T. E.; Ultsch, M.; Walker, L.; Wiesmann, C.; Zhang, B.; Zhu, B. Y.; Cochran, A. G., A class of 2,4-bisanilinopyrimidine Aurora A inhibitors with unusually high selectivity against Aurora B. J Med Chem 2009, 52 (10), 3300-7.
39. Kamal, A.; Dastagiri, D.; Ramaiah, M. J.; Reddy, J. S.; Bharathi, E. V.; Reddy, M. K.; Sagar, M. V.; Reddy, T. L.; Pushpavalli, S. N.; Pal-Bhadra, M., Synthesis and apoptosis inducing ability of new anilino substituted pyrimidine sulfonamides as potential anticancer agents. European journal of medicinal chemistry 2011, 46 (12), 5817-24.
40. Sun, X. Y.; Hu, C.; Deng, X. Q.; Wei, C. X.; Sun, Z. G.; Quan, Z. S., Synthesis and anti-inflammatory activity evaluation of some novel 6-alkoxy(phenoxy)-[1,2,4]triazolo[3,4-a]phthalazine-3-amine derivatives. European journal of medicinal chemistry 2010, 45 (11), 4807-12.
41. Hu, Q.; Jagusch, C.; Hille, U. E.; Haupenthal, J.; Hartmann, R. W., Replacement of imidazolyl by pyridyl in biphenylmethylenes results in selective CYP17 and dual CYP17/CYP11B1 inhibitors for the treatment of prostate cancer. J Med Chem 2010, 53 (15), 5749-58.
42. Fleming, M. J.; McManus, H. A.; Rudolph, A.; Chan, W. H.; Ruiz, J.; Dockendorff, C.; Lautens, M., Concise enantioselective total syntheses of (+)-homochelidonine, (+)-chelamidine, (+)-chelidonine, (+)-chelamine and (+)-norchelidonine by a Pd II-catalyzed ring-opening strategy. Chemistry 2008, 14 (7), 2112-24.
43. Helal, C. J.; Kang, Z.; Hou, X.; Pandit, J.; Chappie, T. A.; Humphrey, J. M.; Marr, E. S.; Fennell, K. F.; Chenard, L. K.; Fox, C.; Schmidt, C. J.; Williams, R. D.; Chapin, D. S.; Siuciak, J.; Lebel, L.; Menniti, F.; Cianfrogna, J.; Fonseca, K. R.; Nelson, F. R.; O'Connor, R.; MacDougall, M.; McDowell, L.; Liras, S., Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia. J Med Chem 2011, 54 (13), 4536-47.
44. Cai, X.; Zhai, H. X.; Wang, J.; Forrester, J.; Qu, H.; Yin, L.; Lai, C. J.; Bao, R.; Qian, C., Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanam ide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem 2010, 53 (5), 2000-9.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top