|
[1]P. Bergveld, 1970, “Development of an ion-sensitive solid-state device for neurophysiological measurements,” IEEE Transactions on Biomedical Engineering, vol. 17, pp. 70-71. [2]S. Caras and J. Janata, 1980, “Field effect transistor sensitive to penicillin,” Analytical Chemistry, vol. 52, pp. 1935-1937. [3]J. Van Der Spiegel, I. Lauks, P. Chan and D. Babic, 1983, “The extended gate chemical sensitive field effect transistor as multi-species microprobe,” Sensors and Actuators B: Chemical, vol. 4, pp. 291-298. [4]L. L. Chi, L. T. Yin, J. C. Chou, W. Y. Chung, T. P. Sun, K. P. Hsiung and S. K. Hsiung, 2000, “Study on separative structure of EnFET to detect acetylcholine,” Sensors and Actuators B: Chemical, vol. 71, pp. 68-72. [5]A. Hayat and J. L. Marty, 2014, “Disposable screen printed electrochemical sensors: Tools for environmental monitoring,” Sensors, vol. 14, pp. 10432-10453. [6]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak and R. P. Socha, 2014, “Fabrication of thick film sensitive RuO2-TiO2 and Ag/AgCl/KCl reference electrodes and their application for pH measurements,” Sensors and Actuators B: Chemical, vol. 204, pp. 57-67. [7]M. H. Asif, F. Elinder and M. Willander, 2011, “Electrochemical biosensors based on ZnO nanostructures to measure intracellular metal ions and glucose,” Journal of Analytical & Bioanalytical Techniques, S7:003, 9 pages. [8]J. Zhang, J. Ma, S. Zhang, W. Wang and Z. Chen, 2015, “A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles decorated carbon spheres,” Sensors and Actuators B: Chemical, vol. 211, pp. 385-391. [9]http://www.who.int/mediacentre/factsheets/fs312/en/ [10]H. C. Wang and A. R. Lee, 2015, “Recent developments in blood glucose sensors,” Journal of Food and Drug Analysis, vol. 23, pp. 191-200. [11]Q. Yan, T. C. Major, R. H. Bartlett and M. E. Meyerhoff, 2011, “Intravascular glucose/lactate sensors prepared with nitric oxide releasing poly(lactide-co-glycolide)-based coatings for enhanced biocompatibility,” Biosensors and Bioelectronics, vol. 26, pp. 4276-4282. [12]K. Rathee, V. Dhull, R. Dhull and S. Singh, 2016, “Biosensors based on electrochemical lactate detection: A comprehensive review,” Biochemistry and Biophysics Reports, vol. 5, pp. 35-54. [13]D. P. Hickey, R. C. Reid, R. D. Milton and S. D. Minteer, 2016, “A self-powered amperometric lactate biosensor based on lactate oxidase immobilized in dimethylferrocene-modified LPEI,” Biosensors and Bioelectronics, vol. 77, pp. 26-31. [14]J. J. Todd, 2016, “Lactate: valuable for physical performance and maintenance of brain function during exercise,” Bioscience Horizons, vol. 7, pp. 1-7. [15]H. Y. Wu, 2001, “Study on array lactate biosensor,” Graduate School of Optoelectronics from National Yunlin University of Science and Technology, Master Thesis. [16]C. W. Chen, 2009, “Study on drift and hysteresis of lactate biosensor based on SnO2 pH electrode,” Department of Electronic Engineering from Chung Yuan Christian University, Master Thesis. [17]P. J. Watkins, J. S. Smith, M. G. Fitzgerald and J. M. Malins, 1969, “Lactic acidosis in diabetes,” British Medical Journal, vol. 1, pp. 744-747. [18]S. D'Auria, Z. Gryczynski, I. Gryczynski, M. Rossi and J. R. Lakowicz, 2000, “A protein biosensor for lactate,” Analytical Biochemistry, vol. 283, pp. 83-88. [19]Y. C. Tsai, S. Y. Chen and H. W. Liaw, 2007, “Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors,” Sensors and Actuators B: Chemical, vol. 125, pp. 474-481. [20]M. Tyagi, M. Tomar and V. Gupta, 2013, “NiO nanoparticle-based urea biosensor,” Biosensors and Bioelectronics, vol. 41, pp. 110-115. [21]D. Sharma, S. Kanchi, M. I. Sabela and K. Bisetty, 2016, “Insight into the biosensing of graphene oxide: Present and future prospects,” Arabian Journal of Chemistry, vol. 9, pp. 238-261. [22]J. Lee, J. Kim, S. Kim and D. H. Min, 2016, “Biosensors based on graphene oxide and its biomedical application,” Advanced Drug Delivery Reviews, vol. 105, pp. 275-287. [23]T. C. Lin, Y. S. Li, W. H. Chiang and Z. Pei, 2017, “A high sensitivity field effect transistor biosensor for methylene blue detection utilize graphene oxide nanoribbon,” Biosensors and Bioelectronics , vol. 89, pp. 511-517. [24]N. F. Chiu, S. Y. Fan, C. D. Yang and T. Y. Huang, 2017, “Carboxyl-functionalized graphene oxide composites as SPR biosensors with enhanced sensitivity for immunoaffinity detection,” Biosensors and Bioelectronics, vol. 89, pp. 370-376. [25]J. C. Chou, R. T. Chen, Y. H. Liao, J. W. Lin, C. Y. Lin, C. Y. Jhang and H. T. Chou, 2015, “Fabrication of potentiometric enzymatic glucose biosensor based on graphene and magnetic beads,” IEEE Sensors Journal, vol. 15, pp. 5278-5284. [26]L. Yang, X. Ren, F. Tang and L. Zhang, 2009, “A practical glucose biosensor based on Fe3O4 nanoparticles and chitosan/nafion composite film,” Biosensors and Bioelectronics, vol. 25, pp. 889-895. [27]T. Wang, Y. Zhou, C. Lei, J. Luo, S. Xie and H. Pu, 2017, “Magnetic impedance biosensor: A review,” Biosensors and Bioelectronics, vol. 90, pp. 418-435. [28]L. Reverté, B. Prieto-Simón and M. Campàs, 2016, “New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review,” Analytica Chimica Acta, vol. 908, pp. 8-21. [29]P. Kurzweil, 2009, “Metal oxides and ion-exchanging surfaces as pH sensors in liquids: state-of-the-art and outlook,” Sensors, vol. 9, pp. 4955-4985. [30]L. Lan, Y. Yao, J. Ping and Y. Ying, 2017, “Recent advances in nanomaterial-based biosensors for antibiotics detection,” Biosensors and Bioelectronics, vol. 91, pp. 504-514. [31]D. S. Kim and H. C. Lee, 2012, “Nickel vacancy behavior in the electrical conductance of nonstoichiometric nickel oxide film,” Journal of Applied Physics, vol. 112, pp. 034504-1-034504-4. [32]H. Sato, T. Minami, S. Takata and T. Yamada, 1993, “Transparent conducting p-type NiO thin films prepared by magnetron sputtering,” Thin Solid Films, vol. 236, pp. 27-31. [33]C. Erdem, D. K. Zeybek, G. Aydoğdu, B. Zeybek, S. Pekyardimci and E. Kiliç, 2014, “Electrochemical glucose biosensor based on nickel oxide nanoparticle-modified carbon paste electrode,” Artificial Cells, Nanomedicine, and Biotechnology, vol. 42, pp. 237-244. [34]W. Huang, Y. Cao, Y. Chen, Y. Zhou and Q. Huang, 2015, “3-D periodic mesoporous nickel oxide for nonenzymatic uric acid sensors with improved sensitivity,” Applied Surface Science, vol. 359, pp. 221-226. [35]M. Tyagia, M. Tomarb, and V. Gupta, 2013, “NiO nanoparticle-based urea biosensor,” Biosensors and Bioelectronics, vol. 41, pp. 110-115. [36]Y.-L. T. Ngo, and S. H. Hur, 2016, “Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure,” Materials Research Bulletin, vol. 84, pp. 168-176. [37]F. Lin, D. T. Gillaspie, A. C. Dillon, R. M. Richards and C. Engtrakul, 2013, “Nitrogen-doped nickel oxide thin films for enhanced electrochromic applications,” Thin Solid Films, vol. 527, pp. 26-30. [38]H. T. Wang, D. K. Mishra, P. Chen and J. M. Ting, 2014, “P-type dye-sensitized solar cell based on nickel oxide photocathode with or without Li doping,” Journal of Alloys and Compounds, vol. 584, pp. 142-147. [39]J. Y. Son, Y. H. Shin, H. Kim and H. M. Jang, 2010, “NiO resistive random access memory nanocapacitor array on graphene,” ACS Nano, vol. 4, pp. 2655-2658. [40]V. V. Felmetsger, 2014, “RF magnetron sputtering process of p-type NiO thin films suitable for mass production of compound semiconductor devices,” International Conference on Compound Semiconductor Manufacturing Technology, Denver, Colorado, pp 357-360. [41]D. J. Yun and S. W. Rhee, 2008, “Deposition of NiOx thin films with radio frequency magnetron sputtering and their characteristics as a source/drain electrode for the pentacene thin film transistor,” Journal of Vacuum Science and Technology B, vol. 26, pp. 1787-1793. [42]S. C. Chen, T. Y. Kuo and T. H. Sun, 2010, “Microstructures, electrical and optical properties of non-stoichiometric p-type nickel oxide films by radio frequency reactive sputtering,” Surface & Coatings Technology, vol. 205, pp. S236-S240 [43]http://studylib.net/doc/8242694/non-stoichiometric-compounds [44]M. Nachman, L. N. Cojocaru and L. V. Rîbco, 1965, “Electrical properties of non-stoichiometric nickel oxide,” Physica Status Solidi B, vol. 8, pp. 773-783. [45]J. H. Oh, S. Y. Hwang, Y. D. Kim, J. H. Song and T. Y. Seong, 2013, “Effect of different sputtering gas mixtures on the structural, electrical, and optical properties of p-type NiO thin films,” Materials Science in Semiconductor Processing, vol. 16, pp. 1346–1351. [46]J. Keraudy, J. García Molleja, A. Ferrec, B. Corraze, M. Richard-Plouet, A. Goullet and P. Y. Jouan, 2015, “Structural, morphological and electrical properties of nickel oxide thin films deposited by reactive sputtering,” Applied Surface Science, vol. 357, pp. 838-844. [47]C. I. L. Justino, A. R. Gomes, A. C. Freitas, A. C. Duarte and T. A. P. Rocha-Santos, 2017, “Graphene based sensors and biosensors,” Trends in Analytical Chemistry, vol. 91, pp. 53-66. [48]L. Lan, Y. Yao, J. Ping and Y. Ying, 2017, “Recent advances in nanomaterial-based biosensors for antibiotics detection,” Biosensors and Bioelectronics, vol. 91, pp. 504-514. [49]E. B. Bahadır and M. K. Sezgintürk, 2015, “Electrochemical biosensors for hormone analyses,” Biosensors and Bioelectronics, vol. 68, pp. 62-71. [50]L. Manjakkal, E. Djurdjic, K. Cvejin, J. Kulawik, K. Zaraska and D. Szwagierczak, 2015, “Electrochemical impedance spectroscopic analysis of RuO2 based thick film pH sensors,” Electrochimica Acta, vol. 168, pp. 246-255. [51]L. Manjakkal, K. Cvejin, J. Kulawik, K. Zaraska, D. Szwagierczak and G. Stojanovic, 2015, “Sensing mechanism of RuO2-SnO2 thick film pH sensors studied by potentiometric method and electrochemical impedance spectroscopy,” Journal of Electroanalytical Chemistry, vol. 759, pp. 82-90. [52]https://en.wikipedia.org/wiki/Double_layer_(surface_science) [53]https://www.khanacademy.org/science/biology/water-acids-and-bases/hydrogen -bonding- in-water/a/water-as-a-solvent [54]A. K. Covington, R. G. Bates and R. A. Durst, 1985, “Definition of pH scales, standard reference values, measurement of pH and related terminology,” Pure and Applied Chemistry, vol. 57, pp. 531-542. [55]J. C. Chou, K. Y. Huang and J. S. Lin, 2000, “Simulation of time-dependent effects of pH-ISFETs,” Sensors and Actuators B: Chemical, vol. 62, pp. 88-91. [56]J. C. Chou, H. M. Tsai, C. N. Shiao and J. S. Lin, 2000, “Study and simulation of the drift behaviour of hydrogenated amorphous silicon gate pH-ISFET,” Sensors and Actuators B: Chemical, vol. 62, pp. 97-101. [57]L. V. Rajaković, D. D. Marković, V. N. Rajaković-Ognjanović and D. Z. Antanasijević, 2012, “Review: The approaches for estimation of limit of detection for ICP-MS trace analysis of arsenic,” Talanta, vol. 102, pp. 79-87. [58]http://www.chem.utoronto.ca/coursenotes/analsci/stats/LimDetect.html [59]https://www.khanacademy.org/math/probability/data-distributions-a1/summarizing -pread-distributions/a/calculating-standard-deviation-step-by-step [60]A. Sardarinejad, D. K. Maurya, M. Khaled and K. Alameh, 2015, “Temperature effects on the performance of RuO2 thin-film pH sensor,” Sensors and Actuators A: Physical, vol. 233, pp. 414-421. [61]G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri, S. Nuvoli, P. Bagella, M. I. Demartis, V. Fiore, R. Manetti and P. A. Serra, 2016, “Enzyme biosensors for biomedical applications: Strategies for safeguarding analytical performances in biological fluids,” Sensors, vol. 16, 21 pages. [62]J. Mehta, N. Bhardwaj, S. K. Bhardwaj, K.-H. Kim and A. Deep, 2016, “Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates,” Coordination Chemistry Reviews, vol. 322, pp. 30-40. [63]C. Altinkaynak, S. Tavlasoglu, N. ÿzdemir and I. Ocsoy, 2016, “A new generation approach in enzyme immobilization: Organic-inorganic hybrid nanoflowers with enhanced catalytic activity and stability,” Enzyme and Microbial Technology, vol. 93-94, pp. 105-112. [64]R. Yada, 2015, “Improving and tailoring enzymes for food quality and functionality,” 1st Edition, Elsevier, pp. 213-235. [65]A. Goswami and Jon Stewart, 2016, “Organic Synthesis Using Biocatalysis,” 1st Edition, Elsevier, pp. 99-126. [66]https://en.wikipedia.org/wiki/Immobilized_enzyme [67]M. Ghiaci , M. Tghizadeh , A. A. Ensafi, N. Zandi-Atashbar and B. Rezaei, 2016, “Silver nanoparticles decorated anchored type ligands as new electrochemical sensors for glucose detection,” Journal of the Taiwan Institute of Chemical Engineers, vol. 63, pp. 39-45. [68]J. S. Chen, 2016, “The research of integrating the differential reference electrode as well as magnetic beads and graphene modified in arrayed flexible IGZO glucose biosensor based on microfluidic framework and the fabrication of multifunctional enzyme real-time sensing system,” Microelectronic and Optoelectronic Engineering, Department of Electronic Engineering from National Yunlin University of Science and Technology, Master Thesis. [69]S. M. U. Ali, O. Nur and M. Willander, B. Danielsson, 2010, “A fast and sensitive potentiometric glucose microsensor based on glucose oxidase coated ZnO nanowires grown on a thin silver wire,” Sensors and Actuators B: Chemical, vol. 145, pp. 869-874, 2010. [70]I. S. Kucherenko, O. O. Soldatkin, F. Lagarde, N. Jaffrezic-Renault, S. V. Dzyadevych and A. P. Soldatkin, 2015, “Determination of total creatine kinase activity in blood serum using an amperometric biosensor based on glucose oxidase and hexokinase, ” Talanta, vol. 144, pp. 604-611. [71]J. C. Chou, D. G. Wu, S. C. Tseng, C. C. Chen and G. C. Ye, 2013, “Application of microfluidic device for lactic biosensor,” IEEE Sensors Journal, vol. 13, pp. 1363-1370. [72]L. Reverté, B. Prieto-Simón and M. Campàs, 2016, “New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review,” Analytica Chimica Acta, vol. 908, pp. 8-21. [73]Y. Qin, P. Yeh, X. Hao and X. Cao, 2015, “Developing an ultra non-fouling SU-8 and PDMS hybrid microfluidic device by poly(amidoamine) engraftment,” Colloids and Surfaces B: Biointerfaces, vol. 127, pp. 247-255. [74]J. C. Chou, Y. L. Tsai, T. Y. Cheng, Y. H. Liao, G. C. Ye and S. Y. Yang, 2014, “Fabrication of arrayed flexible screen-printed glucose biosensor based on mircofluidic framework,” IEEE Sensors Journal, vol. 14, pp. 178-183. [75]J. C. Chou, C. Y. Jhang, Y. H. Liao, J. W. Lin, R. T. Chen and H. T. Chou, 2014 “Research of stability and interference with the potentiometric flexible arrayed glucose sensor based on microfluidic framework,” IEEE Transactions on Semiconductor Manufacturing, vol. 27, pp. 523-529. [76]https://zh.wikipedia.org/wiki/ZigBee [77]V. F. Lvovich, 2012, “Impedance spectroscopy: applications to electrochemical and dielectric phenomena,” 1st Edtion, Wiley. [78]F. Lin, H. Y. Chang, S. H. Hsiao, H. I. Chen and W. C. Liu, 2015, “Preparation and characterization of nickel oxide based EGFET pH sensors,” International Conference on Sensing Technology, Auckland, New Zealand, pp. 402-405. [79]A. Sardarinejad, D. K. Maurya and K. Alameh, 2014, “The effects of sensing electrode thickness on ruthenium oxide thin-film pH sensor,” Physica Status Solidi B Basic Solid State Physics, vol. 214, pp. 15-19. [80]S. Nandy, S. Goswami and K. K. Chattopadhyay, 2010, “Ultra smooth NiO thin films on flexible plastic (PET) substrate at room temperature by RF magnetron sputtering and effect of oxygen partial pressure on their properties,” Applied Surface Science, vol. 256, pp. 3142-3147. [81]A. Ges, B. L. Ivanov, D. K. Schaffer, E. A. Lima, A. A. Werdich and F. J. Baudenbacher, “Thin-film IrO pH microelectrode for microfluidic-based microsystems,” Biosensors and Bioelectronics, vol. 21, pp. 248-256, Aug. 2005. [82]C. Wildi, G. Cabello, M. E. Z. Michoff, P. Vélez, E. P. M. Leiva, J. J. Calvente, R. Andreu and A. Cuesta, 2015, “Super-Nernstian shifts of interfacial proton-coupled electron transfers: Origin and effect of non-covalent interactions,” The Journal of Physical Chemistry C, vol. 120, pp. 15586-15592. [83]E. Pungor, 2001, “The new theory of ion-selective electrodes,” Sensors, vol. 1, pp. 1-12. [84]A. S. Poghossian, 1992, “The super-Nernstian pH sensitivity of Ta2O5-gate ISFETs,” Sensors and Actuators B: Chemical, vol. 7, pp. 367-370. [85]J. Hendrikse, W. Olthuis and P. Bergveld, 1998, “A method of reducing oxygen induced drift in iridium oxide pH sensors,” Sensors and Actuators B: Chemical, vol. 53, pp. 97-103. [86]E. Ruckenstein and H. Huang, 2014, “Specific ion effects on double layer forces through ion hydration,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 459, pp. 151-156. [87]J. H. Yoon, S. B. Hong, S. O. Yun, S. J. Lee, T. J. Lee, K. G. Lee and B. G. Choi, 2017, “High performance flexible pH sensor based on polyaniline nanopillar array electrode,” Journal of Colloid and Interface Science, vol. 490, pp. 53-58. [88]K. M. Chang, C. T. Chang, K. Y. Chao and C. H. Lin, 2010, “A novel pH-dependent drift improvement method for zirconium dioxide gated pH-ion sensitive field effect transistors,” Sensors, vol. 10, pp. 4643-4654. [89]J. C. Chou and C. N. Hsiao, 2000, “Drift behavior of ISFETs with a-Si:H-SiO2 gate insulator,” Materials Chemistry and Physics, vol. 63, pp. 270-273. [90]B. N. Popov, 2015, “Corrosion Engineering: Principles and Solved Problems,” 1st ed, Elsevier, pp. 68-71. [91]J. Y. Oh, H. J. Jang, W. J. Cho and M. S. Islam, 2012, “Highly sensitive electrolyte-insulator-semiconductor pH sensors enabled by silicon nanowires with Al2O3/SiO2 sensing membrane,” Sensors and Actuators B: Chemical, vol. 171-172, pp. 238-243. [92]A. Das, D. H. Ko, C. H. Chen, L. B. Chang, C. S. Lai, F. C. Chu, L. Chow, and R. M. Lin, “Highly sensitive palladium oxide thin film extended gate FETs as pH sensor,” Sensors and Actuators B: Chemical, vol. 205, pp. 199-205, Dec. 2014. [93]B. Xu, and W. D. Zhang, “Modification of vertically aligned carbon nanotubes with RuO2 for a solid-state pH sensor,” Electrochimica Acta, vol. 55, pp. 2859-2864, Mar. 2010. [94]M. J. Schöning, A. Simonis, C. Ruge, H. Ecken, M. Müller-Veggian and Hans Lüth, “A (bio-)chemical field-effect sensor with macroporous Si as substrate material and a SiO2 / LPCVD-Si3N4 double layer as pH transducer,” Sensors, vol. 2, pp. 11-22, Jan. 2002. [95]C. N. Tsai, J. C. Chou, T. P. Sun, and S. K. Hsiung, “Study on the sensing characteristics and hysteresis effect of the tin oxide pH electrode,” Sensors and Actuators B: Chemical, vol. 108, pp. 877-882, Jul. 2005. [96]J. C. Chou, and C. Y. Weng, “Sensitivity and hysteresis effect in Al2O3 gate pH-ISFET,” Materials Chemistry and Physics, vol. 71, pp. 120-124, Aug. 2001. [97]H. H. Li, C. E. Yang, C. C. Kei, C. Y. Su, W. S. Dai, J. K. Tseng, P. Y. Yang, J. C. Chou, and H. C. Cheng, “Coaxial-structured ZnO/silicon nanowires extended-gate field-effect transistor as pH sensor,” Thin Solid Films, vol. 529, pp. 173-176, Feb. 2013. [98]R. T. Chen, 2015, “Integrating the fabrication of the differential reference electrode and graphene modified in arrayed flexible glucose biosensor system based on magnetic beads and microfluidic framework as well as the measurement and impedance analysis of the system”, National Yunlin University of Science and Technology, Master Thesis. [99]J. Bisquert, G. Garcia-Belmonte, F. Fabregat-Santiago and P. R. Bueno, 1999, “Theoretical models for ac impedance of finite diffusion layers exhibiting low frequency dispersion,” Journal of Electroanalytical Chemistry, vol. 475, pp.152-163. [100]J. C. Chou, Y. L. Tsai, T. Y. Cheng, Y. H. Liao, G.C. Ye and S. Y. Yang, 2014, “Fabrication of arrayed flexible screen-printed glucose biosensor based on mircofluidic framework,” IEEE Sensors Journal, vol. 14, pp. 178-183. [101]D. A. Sakharov, M. U. Shkurnikov, M. Y. Vagin, E. I. Yashina, A. A. Karyakin and A. G. Tonevitsky, 2010, “Relationship between lactate concentrations in active muscle sweat and whole blood,” Bulletin of Experimental Biology and Medicine, vol. 150, pp. 83-85. [102]T. Ohkuwa, K. Tsukamoto, K. Yamai, H. Itoh, Y. Yamazaki and T. Tsuda, 2009, “The relationship between exercise intensity and lactate concentration on the skin surface,” International Journal of Biomedical Science, vol. 5, pp. 23-27. [103]G. Tripathi, N. Kachhwaha, I. Dabi and N. Bandooni, 2011, “Temperature-dependent alterations in metabolic enzymes and proteins of three ecophysiologically different species of earthworms,” Brazilian Archives of Biology and Technology, vol. 54, pp. 769-776. [104]J. J. Xu, W. Zhao, X. L. Luo and H. Y. Chen, 2005, “A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors,” Chemical Communications, vol. 6, pp.792-794. [105]B. Kharitonov, M. Zayats, L. Alfonta, E. Katz and I. Willner, 2001, “A novel ISFET-based NAD+-dependent enzyme sensor for lactate,” Sensors and Actuators B: Chemical, vol. 76, pp. 203-210. [106]A. K. Diallo, L. Djeghlaf, L. Mazenq, J. Launay, W. Sant and P. Temple-Boyer, 2013, “Development of pH-based ElecFET biosensors for lactate ion detection,” Biosensors and Bioelectronics, vol. 40, pp. 291-296. [107]A. Lupu, A. Valsesia, F. Bretagnol, P. Colpo and F. Rossi, 2007, “Development of a potentiometric biosensor based on nanostructured surface for lactate determination,” Sensors and Actuators B: Chemical, vol. 127, pp. 606-621. [108]J. C. Chou, T. Y. Cheng, G. C. Ye, Y. H. Liao, S. Y. Yang, H. T. Chou, 2013, “Fabrication and investigation of arrayed glucose biosensor based on microfluidic framework,” IEEE Sensors Journal, vol. 13, pp. 4180-4187. [109]D. M. Kim, S. J. Cho, C. H. Cho, K. B. Kim, M. Y. Kim and Y. B. Shim, 2016, “Disposable all-solid-state pH and glucose sensors based on conductive polymer covered hierarchical AuZn oxide,” Biosensors and Bioelectronics, vol. 79, pp. 165-172. [110]A. Fulati, S. M. U. Ali, M. H. Asif, N. U. H. Alvi, M. Willander, C. Brännmark, P. Strålfors, S. I. Börjesson, F. Elinder and B. Danielsson, 2010, “An intracellular glucose biosensor based on nanoflake ZnO,” Sensors and Actuators B:Chemical,vol. 150, pp. 673-680. [111]K. Khun, Z. H. Ibupoto, J. Lu, M. S. AlSalhi, M. Atif, A. A. Ansari and M. Willander, 2012, “Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode,” Sensors and Actuators B: Chemical, vol. 173, pp. 698-703. [112]M. Parrilla, R. Cánovas and F. J. Andrade, 2017, “Paper-based enzymatic electrode with enhanced potentiometric response for monitoring glucose in biological fluids,” Biosensors and Bioelectronics, vol. 90, pp. 110-116. [113]周榮泉、陳松智,2006,葡萄糖濃度感測元件、葡萄糖濃度之量測系統以及葡萄糖濃度之校正電路系統,中華民國發明專利,申請號:095125633。 [114]J. C. Chou, J. T. Chen, Y. H. Liao, C. H. Lai, R. T. Chen, Y. L. Tsai, C. Y. Lin, J. S. Chen, M. S. Huang and H. T. Chou, 2016, “Wireless sensing system for flexible arrayed potentiometric sensor based on XBee module,” IEEE Sensors Journal, vol. 16, pp. 5588-5595.
|