跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 10:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡博宇
研究生(外文):Bo-Yu Tsai
論文名稱:運用整流天線技術之免電源微波功率檢測器
論文名稱(外文):Passive Microwave Power Detector Based on Rectenna Technique
指導教授:張盛富
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:73
中文關鍵詞:整流天線功率檢測器
外文關鍵詞:power detectorrectenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:965
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本論文是以整流天線技術實現免電源的微波功率檢測器,其設計目標是以不損耗直流功率的情況下提升檢測器之電壓鑑別度與轉換效率。第一個電路為無電源之微波功率檢測器,其設計的方法是先利用本論文推導的結果選定檢測器內元件規格,再利用大訊號量測法擷取在大訊號下的檢測器阻抗值做功率匹配,以達到在單一功率點下有最佳的功率匹配效果。實製檢測器在輸入為7 dBm條件下的轉換效率由3%提升為29.4%,操作頻率為2.45 GHz,電路尺寸為17.9 mm×9.3 mm。
第二個電路為高效率微波功率檢測器,操作頻率為2.45 GHz,因為輸入訊號有大幅動態變化,所以設計一個可調整的匹配網路,可使在不同輸入功率的條件下仍有較佳的轉換效率。在輸入訊號由0-15 dBm的動態範圍中,未加匹配網路檢測器轉換效率為8%,而利用可調匹配網路之技術轉換效率增至28%,電路尺寸為42 mm×26.5 mm。
In this thesis, passive microwave power detectors with zero power consumption were developed based on the rectenna technique. The first passive power detector detects 2.45 GHz microwave power emitted in the wireless environment. The conversion efficiency is 29.4% at the input power of 7 dBm. The circuit was realized on FR4 substrate with the size of 17.9 mm×9.3 mm. To further enhance the conversion efficiency, a tunable matching circuit was designed in front of the microwave rectifying circuit. Because the internal impedance of the microwave rectifying circuit varies with the input signal level, the nonlinear internal impedance contour on Smith chart was measured and is matched by tuning the impedance matching network. The measured conversion efficiency was improved from 8% of the unmatched case to 28% for 0-15 dBm input power dynamic variation.
目錄 i
圖目錄 ii
表目錄 v
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 7
第二章 免電源之微波功率檢測器 8
2.1 免電源之微波功率檢測器介紹 8
2.2 格萊納赫整流電路 (Greinacher Rectifier) 12
2.3 檢測器節點電壓特性模擬 23
2.4 檢測器節阻抗匹配模擬 29
2.5 量測與實作 35
2.6 檢測距離測試 42
第三章 高效率之微波功率檢測器 44
3.1 可調式匹配網路簡介 44
3.2 最佳阻抗匹配點分析 45
3.3 輸入阻抗點與功率位準萃取 53
3.4 可調式匹配網路設計 55
3.5 可調式匹配網路製作與感測器特性量測 57
3.6 討論與未來工作 61
第四章 結論 62
參考文獻 63
作者簡介 68
[1]N. Shinohara and H. Matsumoto, “Experimental study of large rectenna array for microwave energy transmission,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 261–267, Mar. 1998.
[2]W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech., vol. 32, pp. 1230–1242,Sept. 1984.
[3]N. Shimokura, N. Kaya, N. Shinohara, and H. Matsumoto, “Point-to-point microwave power transmission experiment,” Trans. Inst. Elect. Eng. Jpn., vol. 120, no. 1, part B, pp. 33–39, Dec. 1998.
[4]N. Shinohara, “Study of MPT receiving system and specification of propagation of power beam,” (in Japanese), Ph.D. dissertation, Kyoto Univ., Kyoto, Japan, 1996.
[5]J. O. McSpadden, F. E. Little, M. B. Duke, and A. Ignatiev, “An in-space wireless energy transmission experiment,” in Proc. IECEC Energy Conversion Engineering Conf., vol. 1, Aug. 1996, pp. 468–473.
[6]L. W. Epp, A. R. Khan, H. K. Smith, and R. P. Smith, “A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) Actuator applications,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 111–120, Jan. 2000.
[7]M. M. Ollivier, “RFID – a practical solution for problem you didn"t even know you had!,” in IEE Colloq. on Wireless Tech. Dig., Nov. 14, 1996, pp. 3/1–3/6.
[8]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, ”A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35–41, Jan. 2006.
[9]M. Usami, A. Sato, K. Sameshima, K. Watanabe, H. Yoshigi and R. Imura, “Powder LSI: An ultra small RF identification chip for individual recognition applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2003, pp. 398–399.
[10]U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input Power,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1602–1608, Oct. 2003.
[11]T. Yuan, C. Qiu, L. WeiLi, Q. Zhang, and M. Seng Leong, ”Passive RFID Tag Designed Using Discrete Components,” in Proc. ISAP Conf. Japan, Aug. 2007, pp. 616–619.
[12]H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 101–110, Jan. 2007.
[13]K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with selft-Vth-cancelltion and power regulation function for UHF RFIDs,” in IEEE Int. Asian Solid-State Circuits Conf., Korea, Nov. 2007, , pp. 119–122.
[14]A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, and F. De Flaviis, “Power harvester design for passive UHF RFID tag using a voltage boosting technique,” IEEE Trans. Microw, Theory Tech., vol. 55, no. 6, pp. 1089–1097, June 2007.
[15]J. W. Dai, L. F. Chiang and S. C. Chen, “The Performance of Collision Arbitration for ISO/IEC 18000-6 RFID Standard” in International Conference on Information Science and Applications (ICISA), 2010, pp. 1–7.
[16]J. Buechler, E. Kasper, P. Russer, and K. M. Strohm, “Silicon high-resistivity-substrate millimeter-wave technology” IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1516–1521, Dec. 1986.
[17]J. Buechler, “Silicon millimeter-wave integrated circuits” in Silicon-Based Millimeter-Wave Devices (Electronics and Photonics Series 32), J.-L. Luy and P. Russer, Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 193–214.
[18]P. Russer and E. Biebl, “Fundamentals,” in Silicon-Based Millimeter-Wave Devices (Electronics and Photonics Series 32), J.-L. Luy and P. Russer, Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 1–41.
[19]D. Beck, M. Herrmann and E. Kasper, “CMOS on FZ-high-resistivity substrate for integration of SiGe-RF-circuitry and readout electronics,” IEEE Trans. Electron Devices, vol. 44, pp. 1091–1101, July 1997.
[20]K. M. Strohm, J. Buechler, and J. F. Luy, “A monolithic millimeter wave integrated silicon slot line detector,” in Asia–Pacific Microwave Conf., Taiwan, R.O.C., 1993, pp. 34–37.
[21]S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.

[22]G. Fischer, W. Eckl, and G. Kaminski, “RF-MEMS and SiC/GaN as enabling technologies for a reconfigurable multi-band/multi-standard radio,” Bell Labs Tech. J., vol. 7, pp. 169–189, 2003.
[23]J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen, and K. Halonen, “A dual-band RF front-end for WCDMA and GSM applications,” in Proc. IEEE Custom Integrated Circuits Conf., 2000, pp. 175–178.
[24]D. Wang, X. Wang, A. Eshraghi, D. Chang, and P. Bacon, “A fully integrated GSM/DCS/PCS Rx VCO with fast switching auto-band selection,” in Proc. IEEE Radio and Wireless Conf., 2002, pp. 209–212.
[25]A. Tasic, W. A. Serdijn, and J. R. Long, “Multi-standard/multi-band adaptive voltage-controlled oscillator,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2004, pp. 135–138.
[26]D. Qiao, R. Molfino, S. M. Lardizabal, B. Pillans, P. M. Asbeck, and G. Jerinic, “An intelligently controlled RF power amplifier with a reconfigurable MEMS-varactor tuner,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1089–1095, Mar. 2005.
[27]T. J. Hyeong, S. L. Hyun, S. C. Ik, and D. K. Chul, “Efficiency enhancement method for high-power amplifiers using a dynamic load adaptation technique,” in Proc. IEEE MTTS Int. Microwave Symp., 2005, pp. 2059–2062.
[28]R. N. Simons and R. Q. Lee, “Impedance matching of tapered slot antenna using a dielectric transformer,” Electron. Lett., vol. 34, pp. 2287–2289, Nov. 1998.
[29]J. de Mingo, A. Valdovinos, A. Crespo, D. Navarro, and P. Garcia,“An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 489–497, Feb. 2004.
[30]A. van Bezooijen, M. de Jongh, C. Chanlo, L. Ruijs, H. J. ten Dolle, P. Lok, F. van Straaten, J. Sneep, R. Mahmoudi, and A. H. M. van Roermund, “RF MEMS based adaptive antenna matching module,” in Proc. IEEE RF IC Symp., 2007, pp. 573–576.
[31]P. Sjoblom and H. Sjoland, “An adaptive impedance tuning CMOS circuit for ISM 2.4 GHz band,” IEEE Trans. Ciircuits Syst. I, Reg. Papers, vol. 52, no. 6, June 2005, pp. 1115–1124.

[32]P. R. Johannessen, “Automatic tuning of high–Q antenna for VLF FSK transmission,” IEEE Trans. Commun. Syst., vol. CS-12, no. 3, pp. 110–115, Mar. 1964.
[33]A. A. Castro, “Automatic tuning system for high power amplifiers,”IEEE Trans. Commun. Technol., vol. CT-14, no. 12, pp. 824–834, Dec.1966.
[34]F. Meng, A. van Bezooijen, and R. Mahmoudi, “A mismatch detector for adaptive impedance matching,” in Proc. 36th Eur. Microw. Conf. ,2006, pp. 1457–1460.
[35]W. C. E. Neo, Y. Lin, X. D. Liu, L. C. N. de Vreede, L. E. Larson, M. Spirito, M. J. Pelk, K. Buisman, A. Akhnoukh, A. de Graauw, and L. K. Nanver, “Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2166–2176, Sept. 2006.
[36]A. Tombak, “A ferroelectric-capacitor-based tunable matching network for quad-band cellular power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 370–375, Feb. 2007.
[37]H. T. Zhang, H. Gao, and G. P. Li, “Broad-band power amplifier with a novel tunable output matching network,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3606–3614, Nov. 2005.
[38]A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, and F. De Flaviis, “Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique,” IEEE Trans. Microw, Theory Tech., vol. 55, no. 6, pp. 1089–1097, June 2007.
[39]C. Davis and G. Lesieutre, “An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness,” J. Sound Vibration, vol. 232, no. 3, pp. 601–17, May 2000.
[40]J.Kymissis, C. Kendall, J. Paradiso, and N. Gerhenfeld, “Parasitic power harvesting in shoes,” in Proc. 2nd Int. Symp. Wearable Comput., Pittsburgh, PA, Oct. 19–20, 1998, pp. 132–139.
[41]N. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro, vol. 21, pp. 30–42, May-June 2001.
[42]P. Smalser, “Power transfer of piezoelectric generated energy,” U.S. Patent, 5 703 474, 1997
[43]E. Koutroulis, K. Kalaitzakis, and N. Voulgaris, “Development of a microcontroller-based photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, pp. 46–54, Jan. 2001.
[44]S. Jeon, A. Suarez, and D. B. Rutledge, ‘‘Nonlinear Design Technique for high-power switching-mode oscillator,’’ IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3630–3640, Oct. 2006.
[45]S. V. Hoeye, F. Ramirez, and A. Suarez, “Nonlinear optimization tools for the design of high-efficiency microwave oscillator”, IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 189–191, May 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top