|
[1]N. Shinohara and H. Matsumoto, “Experimental study of large rectenna array for microwave energy transmission,” IEEE Trans. Microwave Theory Tech., vol. 46, pp. 261–267, Mar. 1998. [2]W. C. Brown, “The history of power transmission by radio waves,” IEEE Trans. Microwave Theory Tech., vol. 32, pp. 1230–1242,Sept. 1984. [3]N. Shimokura, N. Kaya, N. Shinohara, and H. Matsumoto, “Point-to-point microwave power transmission experiment,” Trans. Inst. Elect. Eng. Jpn., vol. 120, no. 1, part B, pp. 33–39, Dec. 1998. [4]N. Shinohara, “Study of MPT receiving system and specification of propagation of power beam,” (in Japanese), Ph.D. dissertation, Kyoto Univ., Kyoto, Japan, 1996. [5]J. O. McSpadden, F. E. Little, M. B. Duke, and A. Ignatiev, “An in-space wireless energy transmission experiment,” in Proc. IECEC Energy Conversion Engineering Conf., vol. 1, Aug. 1996, pp. 468–473. [6]L. W. Epp, A. R. Khan, H. K. Smith, and R. P. Smith, “A compact dual-polarized 8.51-GHz rectenna for high-voltage (50 V) Actuator applications,” IEEE Trans. Microwave Theory Tech., vol. 48, pp. 111–120, Jan. 2000. [7]M. M. Ollivier, “RFID – a practical solution for problem you didn"t even know you had!,” in IEE Colloq. on Wireless Tech. Dig., Nov. 14, 1996, pp. 3/1–3/6. [8]T. Umeda, H. Yoshida, S. Sekine, Y. Fujita, T. Suzuki, and S. Otaka, ”A 950-MHz rectifier circuit for sensor network tags with 10-m distance,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 35–41, Jan. 2006. [9]M. Usami, A. Sato, K. Sameshima, K. Watanabe, H. Yoshigi and R. Imura, “Powder LSI: An ultra small RF identification chip for individual recognition applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2003, pp. 398–399. [10]U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input Power,” IEEE J. Solid-State Circuits, vol. 38, no. 10, pp. 1602–1608, Oct. 2003. [11]T. Yuan, C. Qiu, L. WeiLi, Q. Zhang, and M. Seng Leong, ”Passive RFID Tag Designed Using Discrete Components,” in Proc. ISAP Conf. Japan, Aug. 2007, pp. 616–619. [12]H. Nakamoto, D. Yamazaki, T. Yamamoto, H. Kurata, S. Yamada, K. Mukaida, T. Ninomiya, T. Ohkawa, S. Masui, and K. Gotoh, “A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35-μm technology,” IEEE J. Solid-State Circuits, vol. 42, no. 1, pp. 101–110, Jan. 2007. [13]K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with selft-Vth-cancelltion and power regulation function for UHF RFIDs,” in IEEE Int. Asian Solid-State Circuits Conf., Korea, Nov. 2007, , pp. 119–122. [14]A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, and F. De Flaviis, “Power harvester design for passive UHF RFID tag using a voltage boosting technique,” IEEE Trans. Microw, Theory Tech., vol. 55, no. 6, pp. 1089–1097, June 2007. [15]J. W. Dai, L. F. Chiang and S. C. Chen, “The Performance of Collision Arbitration for ISO/IEC 18000-6 RFID Standard” in International Conference on Information Science and Applications (ICISA), 2010, pp. 1–7. [16]J. Buechler, E. Kasper, P. Russer, and K. M. Strohm, “Silicon high-resistivity-substrate millimeter-wave technology” IEEE Trans. Microwave Theory Tech., vol. 34, pp. 1516–1521, Dec. 1986. [17]J. Buechler, “Silicon millimeter-wave integrated circuits” in Silicon-Based Millimeter-Wave Devices (Electronics and Photonics Series 32), J.-L. Luy and P. Russer, Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 193–214. [18]P. Russer and E. Biebl, “Fundamentals,” in Silicon-Based Millimeter-Wave Devices (Electronics and Photonics Series 32), J.-L. Luy and P. Russer, Eds. Berlin, Germany: Springer-Verlag, 1994, pp. 1–41. [19]D. Beck, M. Herrmann and E. Kasper, “CMOS on FZ-high-resistivity substrate for integration of SiGe-RF-circuitry and readout electronics,” IEEE Trans. Electron Devices, vol. 44, pp. 1091–1101, July 1997. [20]K. M. Strohm, J. Buechler, and J. F. Luy, “A monolithic millimeter wave integrated silicon slot line detector,” in Asia–Pacific Microwave Conf., Taiwan, R.O.C., 1993, pp. 34–37. [21]S. Lim, K. M. K. H. Leong, and T. Itoh, “Adaptive power controllable retrodirective array system for wireless sensor server applications,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3735–3743, Dec. 2005.
[22]G. Fischer, W. Eckl, and G. Kaminski, “RF-MEMS and SiC/GaN as enabling technologies for a reconfigurable multi-band/multi-standard radio,” Bell Labs Tech. J., vol. 7, pp. 169–189, 2003. [23]J. Ryynanen, K. Kivekas, J. Jussila, A. Parssinen, and K. Halonen, “A dual-band RF front-end for WCDMA and GSM applications,” in Proc. IEEE Custom Integrated Circuits Conf., 2000, pp. 175–178. [24]D. Wang, X. Wang, A. Eshraghi, D. Chang, and P. Bacon, “A fully integrated GSM/DCS/PCS Rx VCO with fast switching auto-band selection,” in Proc. IEEE Radio and Wireless Conf., 2002, pp. 209–212. [25]A. Tasic, W. A. Serdijn, and J. R. Long, “Multi-standard/multi-band adaptive voltage-controlled oscillator,” in Proc. IEEE Radio Frequency Integrated Circuits Symp., 2004, pp. 135–138. [26]D. Qiao, R. Molfino, S. M. Lardizabal, B. Pillans, P. M. Asbeck, and G. Jerinic, “An intelligently controlled RF power amplifier with a reconfigurable MEMS-varactor tuner,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 1089–1095, Mar. 2005. [27]T. J. Hyeong, S. L. Hyun, S. C. Ik, and D. K. Chul, “Efficiency enhancement method for high-power amplifiers using a dynamic load adaptation technique,” in Proc. IEEE MTTS Int. Microwave Symp., 2005, pp. 2059–2062. [28]R. N. Simons and R. Q. Lee, “Impedance matching of tapered slot antenna using a dielectric transformer,” Electron. Lett., vol. 34, pp. 2287–2289, Nov. 1998. [29]J. de Mingo, A. Valdovinos, A. Crespo, D. Navarro, and P. Garcia,“An RF electronically controlled impedance tuning network design and its application to an antenna input impedance automatic matching system,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 2, pp. 489–497, Feb. 2004. [30]A. van Bezooijen, M. de Jongh, C. Chanlo, L. Ruijs, H. J. ten Dolle, P. Lok, F. van Straaten, J. Sneep, R. Mahmoudi, and A. H. M. van Roermund, “RF MEMS based adaptive antenna matching module,” in Proc. IEEE RF IC Symp., 2007, pp. 573–576. [31]P. Sjoblom and H. Sjoland, “An adaptive impedance tuning CMOS circuit for ISM 2.4 GHz band,” IEEE Trans. Ciircuits Syst. I, Reg. Papers, vol. 52, no. 6, June 2005, pp. 1115–1124.
[32]P. R. Johannessen, “Automatic tuning of high–Q antenna for VLF FSK transmission,” IEEE Trans. Commun. Syst., vol. CS-12, no. 3, pp. 110–115, Mar. 1964. [33]A. A. Castro, “Automatic tuning system for high power amplifiers,”IEEE Trans. Commun. Technol., vol. CT-14, no. 12, pp. 824–834, Dec.1966. [34]F. Meng, A. van Bezooijen, and R. Mahmoudi, “A mismatch detector for adaptive impedance matching,” in Proc. 36th Eur. Microw. Conf. ,2006, pp. 1457–1460. [35]W. C. E. Neo, Y. Lin, X. D. Liu, L. C. N. de Vreede, L. E. Larson, M. Spirito, M. J. Pelk, K. Buisman, A. Akhnoukh, A. de Graauw, and L. K. Nanver, “Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2166–2176, Sept. 2006. [36]A. Tombak, “A ferroelectric-capacitor-based tunable matching network for quad-band cellular power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 370–375, Feb. 2007. [37]H. T. Zhang, H. Gao, and G. P. Li, “Broad-band power amplifier with a novel tunable output matching network,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3606–3614, Nov. 2005. [38]A. Shameli, A. Safarian, A. Rofougaran, M. Rofougaran, and F. De Flaviis, “Power Harvester Design for Passive UHF RFID Tag Using a Voltage Boosting Technique,” IEEE Trans. Microw, Theory Tech., vol. 55, no. 6, pp. 1089–1097, June 2007. [39]C. Davis and G. Lesieutre, “An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness,” J. Sound Vibration, vol. 232, no. 3, pp. 601–17, May 2000. [40]J.Kymissis, C. Kendall, J. Paradiso, and N. Gerhenfeld, “Parasitic power harvesting in shoes,” in Proc. 2nd Int. Symp. Wearable Comput., Pittsburgh, PA, Oct. 19–20, 1998, pp. 132–139. [41]N. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro, vol. 21, pp. 30–42, May-June 2001. [42]P. Smalser, “Power transfer of piezoelectric generated energy,” U.S. Patent, 5 703 474, 1997 [43]E. Koutroulis, K. Kalaitzakis, and N. Voulgaris, “Development of a microcontroller-based photovoltaic maximum power point tracking control system,” IEEE Trans. Power Electron., vol. 16, pp. 46–54, Jan. 2001. [44]S. Jeon, A. Suarez, and D. B. Rutledge, ‘‘Nonlinear Design Technique for high-power switching-mode oscillator,’’ IEEE Trans. Microw. Theory Tech., vol. 54, no. 10, pp. 3630–3640, Oct. 2006. [45]S. V. Hoeye, F. Ramirez, and A. Suarez, “Nonlinear optimization tools for the design of high-efficiency microwave oscillator”, IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp. 189–191, May 2004.
|