|
Azzalini, A. (1985). A class of distributions which includes the normal ones. Scandinavian journal of statistics, pages 171–178.
Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multi- variate skew normal distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3):579–602.
Azzalini, A. and Capitanio, A. (2003). Distributions generated by pertur- bation of symmetry with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(2):367–389.
Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal dis- tribution. Biometrika, 83(4):715–726.
Daiger, S. P., Miller, M., and Chakraborty, R. (1984). Heritability of quan- titative variation at the group-specific component (gc) locus. American journal of human genetics, 36(3):663.
Gupta, A. (2003). Multivariate skew t-distribution. Statistics: A Journal of Theoretical and Applied Statistics, 37(4):359–363.
Gupta, A. K. and Huang, W.-J. (2002). Quadratic forms in skew normal variates. Journal of Mathematical Analysis and Applications, 273(2):558–564.
Huang, W.-J., Su, N.-C., and Teng, H.-Y. (2012). On some study of skew-t distributions. Journal of the Department of Applied Mathematics; National University of Kaohsiung.
Jones, M. and Faddy, M. (2003). A skew extension of the t-distribution, with applications. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65(1):159–174.
Lange, K. L., Little, R. J., and Taylor, J. M. (1989). Robust statistical modeling using the t distribution. Journal of the American Statistical Association, 84(408):881–896.
Lin, Y.-C. and Su, N.-C. (2013). A study of the scale mixture of skew normal distribution. Journal of the National Taipei University department of statistic.
Ma, Y. and Genton, M. G. (2004). Flexible class of skew-symmetric distri- butions. Scandinavian Journal of Statistics, 31(3):459–468.
|