跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.102) 您好!臺灣時間:2025/12/04 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡文力
研究生(外文):Wen-Li Tsai
論文名稱:AZ80及LAZ1110鎂合金制振能之研究
論文名稱(外文):Studies on Damping Capacities of AZ80 and LAZ1110 Magnesium Alloys
指導教授:吳錫侃
指導教授(外文):Shyi-Kaan Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:129
中文關鍵詞:AZ80合金鎂鋰合金制振能冷軋延高溫制振背景值再結晶
外文關鍵詞:AZ80 alloyMg-Li alloydamping capacitycold-rollingrecrystallizationDMA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用動態機械分析儀(DMA)之測試,探討商業用AZ80合金和LAZ1110鎂鋰合金在各溫度下之制振能,並藉由硬度量測、顯微組織觀察與XRD分析等,協助瞭解冷軋延或時效處理對鎂合金制振能的影響,以及各個制振峰及200-300℃區間高溫制振背景值(HTDB)之機制。經測試結果顯示,AZ80合金在HTDB的溫度區間內,不論有無後續的100℃時效處理,經過20%冷軋延後其HTDB制振能皆可獲得明顯的提升。然而,形成HTDB的活化能卻在冷軋延後由1.69eV降至1.37eV,表示冷軋過程會加速合金內部之擴散作用,並同時促進潛變的發生。因此,當AZ80合金的應用拓展到HTDB之溫度區間時,冷軋延對其制振能以及抗潛變能力的正反兩面影響,是需要被審慎考量的。對LAZ1110合金而言,無論是剛取得之擠製板材或者不同程度之冷軋薄板,其制振能於升溫過程依序均有P1、P2與P3三個制振峰出現。而冷軋程度愈大者,不僅於室溫下tanδ值愈高,其P3峰頂的溫度也會愈往低溫平移,且均在鎂金屬的再結晶溫度200℃附近。經研究結果推斷,鎂鋰合金有P3峰的出現與基材上β(200)優選晶位極為相關,且在大量冷軋延後還涉及再結晶作用。另外,以0.1Hz之低頻率對80%冷軋延之LAZ1110合金薄板進行DMA測試,可於室溫下有效達到高制振能材料之標準(即tanδ≧0.03)。
Damping capacities (DCs) of AZ80 and LAZ1110 magnesium alloys are investigated by Dynamic Mechanical Analyzer (DMA) at the temperature range of 0-300℃. DC of the high-temperature damping background (HTDB) at 200-300℃ for AZ80 alloy increases significantly after 20% cold-rolling with or without aging. However, the activation energy of HTDB decreases from 1.69eV to 1.37eV, which indicates cold-rolling can accelerate alloy’s diffusion process and promote its creep development simultaneously. Consequently, the contrary cold-rolling effect on DC and creep resistance of AZ80 alloy should be taken into account carefully for its high-temperature applications. Three damping peaks P1, P2 and P3 are observed for LAZ1110 Mg-Li alloy. Severe cold-rolling can effectively improve the DC of LAZ1110 alloy at room temperature. The P3 peak located at about 200℃ shifts to lower temperature if the extent of cold-rolling increases. Experimental results show that, after severe cold-rolling, the formation of P3 peak is well-related to β(200) preferred orientation and caused by recrystallization process. Besides, high damping criterion (tanδ≧0.03) can be met at room temperature for 80% cold-rolled LAZ1110 sheet tested at 0.1Hz low frequency or at 30-35μm operating amplitude.
誌謝……………………………………………………………………………...…...…..i
中文摘要..........................................................................................................................iii
英文摘要...........................................................................................................................v
目錄………………………………………………………………………………….…vii
第一章 前言….................................................................................................................1
第二章 文獻回顧.............................................................................................................3
2-1 簡介………………...……..…..........................................................................3
2-2 鎂與鎂合金之應用………………………………………….….………….…3
2-3 鎂合金之成分及命名方法…...........................................................................4
2-4 鎂合金添加元素之影響…...………………………………………………....5
2-4-1 常見之合金元素……………………………………………………….5
2-4-1-1 鋁(Al)…………………………………………………….……5
2-4-1-2 鋅(Zn)……………………………………………………….....5
2-4-1-3 錳(Mn)………………………………………………….……...6
2-4-1-4 鋯(Zr)………………………………………………………….6
2-4-1-5 鋰(Li)…………………………………………………………..6
2-4-1-6 矽(Si)……………………………………………………...…...7
2-4-1-7 鈣(Ca)………………………………………………………….7
2-4-1-8 稀土元素(RE)………………………………………..………..7
2-4-2 微量添加元素……………………………………………………...…..8
2-4-2-1 雜質:鐵(Fe)、鎳(Ni)、銅(Cu)…………………………...8
2-4-2-2 鈹(Be)…………………………...………………………..……8
2-4-2-3 鈧(Sc)………………………………………………………...8
2-5 AZ系列鎂合金…………………………………..............................................8
2-6 鎂鋰合金……………………..……………………………………………...10
2-6-1 BCC/HCP結構間之晶位關係…………………………………….….10
2-6-1-1 軸向比之相依性……………………………………………...10
2-6-1-2 結晶方位關係……………………………………………..….12
2-6-2 顯微結構之演變……………………………………………….……..12
2-7材料之阻尼特性…………………………………………………………..…13
2-7-1 材料內部的能量散失…………………………………………...…....13
2-7-2 阻尼特性之流變模型…………………………………………….…..13
2-7-3 高制振能材料………………………………………………………...16
2-8 金屬材料之阻尼機制…...…...………………………………………….…..18
2-8-1點缺陷制振峰………………………………………………..………..18
2-8-1-1 Snoek效應……………………………………………...……...18
2-8-1-2 Zener效應……………………………………………..………19
2-8-2 差排制振峰……………………………………………….…….…….19
2-8-3 晶界制振峰…...……………………………………………………....19
2-8-4 高溫制振背景值(HTDB)………………………………………...….20
第三章 實驗方法與儀器...............................................................................................39
3-1 實驗流程…………………………......……………………………………...39
3-2 材料來源.........................................................................................................39
3-2-1 AZ80合金…...……………………………………………………...…39
3-2-2 LAZ1110合金…...……………………………………………….....…40
3-3 密度量測.........................................................................................................40
3-4 冷軋延(Cold Rolling,CR).........................................................................41
3-5 熱處理….........................................................................................................41
3-6 DMA分析.........................................................................................................42
3-6-1 DMA2980之本體組成與附加組件……………………………..……42
3-6-2 DMA2980之儀器規範……………………………………..…………43
3-6-3 單╱雙懸臂之間的考量………...…………………………………....44
3-6-4 試片的製備要點…………………………………………….……..…44
3-7 顯微組織觀察……………...……………………………………………...…45
3-7-1 一般金相觀察………………………………………………......…….45
3-7-2 穿透式電子顯微鏡(Transmission Electron Microscope,TEM)……45
3-8 XRD分析……………………………………………………...…………...…45
3-9 維氏硬度測試(Microvickers Hardness Test)………………….……….…...46
第四章 AZ80合金之制振能探討.................................................................................55
4-1剛取得之AZ80板材制振能............................................................................55
4-1-1 基本制振特性………………………………………………………...55
4-1-2 與純鎂或其他AZ系列鎂合金之制振能比較…………………...….56
4-1-3 頻率對制振能之影響……………………………………………...…57
4-1-4 振幅對制振能之影響………………………………………………...58
4-2 不同熱機處理條件下之硬度量測…………………………………...…...…60
4-3 冷軋延後AZ80薄板之制振能......……………..……………………………60
4-3-1 冷軋延對制振能之影響…………………………………………...…61
4-3-2 金相觀察……………………………………………………………...62
4-3-3 頻率對制振能之影響………………………………………………...62
4-4 冷軋延且時效過後AZ80薄板之制振能……................................................62
4-4-1時效溫度對制振能之影響……………………………………............63
4-4-2時效時間對制振能之影響…………...…………………………….…64
4-5 高溫制振背景值(HTDB)之分析與探討…………………………………65
4-5-1 HTDB活化能之數據分析……………………………………………65
4-5-2 冷軋延對HTDB之影響…………………………………………..….67
4-5-3 不同合金之HTDB比較………………………………………….…..68
4-5-4 100℃時效對HTDB之影響……………………………………….….69
第五章 LAZ1110合金之制振能探討……………………...…………………………87
5-1 密度量測………………………………………………………………...…..87
5-2 剛取得之LAZ1110板材制振能……………………………………………87
5-2-1 基本制振特性……………………………………………………...…87
5-2-2 熱循環之影響……………………………………………………..….88
5-3 冷軋延後LAZ1110薄板之制振能…………………………………………89
5-3-1 冷軋程度對制振能之影響…………………………………………...89
5-3-2 不同於軋延方向對制振能之影響…………………………………...91
5-3-3 振幅對制振能之影響………………………………………………...92
5-3-4 室溫╱100℃時效對制振能之影響………………………………….93
5-4 DMA測試過程之顯微組織變化………………………………………...….94
5-4-1 硬度量測…………………………………………………………...…95
5-4-2 顯微組織觀察………………………………………………………...96
5-4-3 XRD之分析結果………………………………………………….…..98
5-5 頻率對LAZ1110合金制振能之影響………………………………..……..99
5-6 制振峰P1、P2與P3之機制探討…………………………………...………..101
第六章 結論.................................................................................................................121
參考文獻.......................................................................................................................125
1.K.U. Kainer (ed.), “Magnesium-Alloys and Technologies”, WILEY-VCH Verlag GmbH & Co. KG aA, Weinheim, 2003.
2.H. Mizubayashi, Y. Ishikawa and H. Tanimoto, J. Alloys Comp. 355 (2003) 31.
3.R. González-Martínez, J. Göken, D. Letzig, K. Steinhoff and K.U. Kainer, J. Alloys Comp. 437 (2007) 127-132.
4.M. Weller, H. Clemens and G. Haneczok, Mater. Sci. Eng. A 442 (2006) 138-141.
5.M. Weller, G. Haneczok, H. Kestler and H. Clemens, Mater. Sci. Eng. A 370 (2004) 234-239.
6.M. Weller, A. Chatterjee, G. Haneczok and H. Clemens, J. Alloys Comp. 310 (2000) 134-138.
7.A. Becerra and M. Pekguleryuz, J. Mater. Res. 23 (2008) 3379-3386.
8.J.B. Clark, Acta Metall. 16 (1968) 141-152.
9.W.F. Smith, “Structural and Properties of Engineering Alloys”, 2nd ed., McGraw-Hill Inc., 1993.
10.D. Hull and D.J. Bacon, “Introduction to Dislocations”, 4th ed., Butterworth-Heinemann, 2001, p.105.
11.戴光勇,鎂合金表面處理技術(上),材料與社會,24 (1998) 57。
12.R.W. Cahn, P. Haasen and E.J. Kramer (eds.), “Materials Science and Technology—A Comprehensive Treatment”, VCH Weinheim, 1996.
13.經濟部工業局,”鎂合金成型產業資源化應用技術手冊”,財團法人台灣綠色生產力基金會,2006,p.8。
14.葉哲政,”鎂合金在車輛產業之應用專題研究”,經濟部產業技術資訊服務推廣計畫,2003,p.35。
15.魏汝超,”鎂合金之熱機處理與退火處理的顯微組織研究”,國立台灣大學機械工程研究所碩士論文,2003。
16.H.E. Friedrich and B.L. Mordike, “Magnesium Technology”, Springer-Verlag Berlin Heidelberg, 2006.
17.C. Shaw and H. Jones, Mater. Sci. Eng. A 226-228 (1997) 856.
18.H. Okamoto, J. Phase Equilibria, 19 (1998) 598.
19.張津、張宗和等,”鎂合金及應用”,化學工業出版社,2004。
20.賴威任,”AZ80鎂合金析出硬化與超塑性研究”,國立台灣大學材料科學與工程研究所碩士論文,2008。
21.J.H. Jackson, P.D. Frost, A.C. Loonam, L.W. Eastwood and C.H. Lorig, Trans. AIME 185 (1949) 149-168.
22.A.A. Nayeb-Hashemi and J.B. Clark, Ed., “Phase Diagrams of Binary Magnesium Alloys”, ASM International, Materials Park, OH, 1998.
23.P. Metenier, G. González-Doncel, O.A. Ruano, J. Wolfenstine and O.D. Sherby, Mater. Sci. Eng. A 125 (1990) 195-202.
24.R.W. Cahn, P. Hassen and E.J. Kramer, Mater. Sci. Technol. 8 (1996) 131.
25.林欣滿,”添加鋁對鎂鋰合金特性影響之研究”,逢甲大學材料科學與工程學系碩士論文,2004。
26.W. Blum, P. Zhang, B. Watzinger, B.V. Grossmann and H.G. Haldenwanger, Mater. Sci. Eng. A 319-321 (2001) 735-740.
27.N. Birbilis, M.A. Easton, A.D. Sudholz, S.M. Zhu and M.A. Gibson, Corrosion Sci. 51 (2009) 683-689.
28.A. Luo, Inter. Mater. Rev. 49 (1) (2004), 13-30.
29.Z. Yin, Q. Pan, Y. Zhang and F. Jiang, Mater. Sci. Eng. A 280 (2000) 151-155.
30.C.B. Fuller, A.R. Krause, D.C. Dunand and D.N. Seidman, Mater. Sci. Eng. A 338 (2002) 8-16.
31.S.C. Wang, C.P. Chou and Y.C. Fann, Mater. Sci. Eng. A 485 (2008) 428-438.
32.S.C. Wang and C.P. Chou, Mater. Sci. Eng. A 197 (2008) 116-121.
33.C.H. Cáceres, C.J. Davidson, J.R. Griffiths and C.L. Newton, Mater. Sci. Eng. A 325 (2002) 344-355.
34.P. Haasen, “Physical Metallurgy”, Cambridge University Press, New York, 1996, p. 83.
35.T. Sumitomo, C.H. Cáceres and M. Veidt, J. Light Metals 2 (2002) 49-56.
36.D. Duly, J.P. Simon and Y. Brechet, Acta Metall. Mater. 43 (1995) 101-106.
37.S. Celloto, Acta Mater. 48 (2000) 1775-1787.
38.S. Celloto and T.J. Bastow, Acta Mater. 49 (2001) 41-51.
39.M.-X. Zhang and P.M. Kelly, Scripta Mater. 48 (2003) 647-652.
40.M. Ben-Haroush, G. Ben-Hamu, D. Eliezer and L. Wagner, Corrosion Sci. 50 (2008) 1766-1778.
41.D. Duly, M.C. Cheynet and Y. Brechet, Acta Metall. Mater. 42 (1994) 3843-3854.
42.D. Duly, M.C. Cheynet and Y. Brechet, Acta Metall. Mater. 42 (1994) 3855-3863.
43.A.F. Crawley and K.S. Milliken, Acta Metall. 22 (1974) 557-562.
44.S.R. Agnew, M.H. Yoo and C.N. Tomé, Acta Mater. 49 (2001) 4277-4289.
45.G.E. Dieter, “Mechanical Metallurgy”, 3rd ed., McGraw-Hill, New York, 1986.
46.M.V. Kral, B.C. Muddle and J.F. Nie, Mater. Sci. Eng. A 460-461 (2007) 227-232.
47.A. Alamo and A.D. Banchik, J. Mater. Sci. 15 (1980) 222-229.
48.C.C. Hsu, J.Y. Wang and S. Lee, Mater. Trans. 49 (2008) 2728-2731.
49.J.Y. Wang, “Mechanical Properties of Room Temperature Rolled MgLiAlZn Alloy”, J. Alloys Comp. (2009) to be submitted.
50.N. Saito, M. Mabuchi, M. Nakanishi, K. Kubota and K. Higashi, Scripta Mater. 36 (1997) 551-555.
51.H.Y. Wu, Z.W. Gao, J.Y. Lin and C.H. Chiu, J. Alloys Comp. 474 (2009) 158-163.
52.M.M. Avedesian and H. Baker (eds.), “ASM Specialty Handbook: Magnesium and Magnesium Alloys”, ASM International, Materials Park, OH, 1999.
53.G.S. Song, M. Staiger and M. Kral, Mater. Sci. Eng. A 371 (2004) 371-376.
54.N.E. Dowling, “Mechanical Behavior of Materials: engineering methods for deformation, fracture, and fatigue”, 2nd ed., Prentice-Hall, Inc., New Jersey, 1999, p. 757-764.
55.T.S. Kê, Phys. Rev., 71 (1947) 533.
56.J. Zhang, R.J. Perez, C.R. Wong and E.J. Lavernia, Mater. Sci. Eng. R13 (1994) 325-390.
57.DMA 2980, Dynamic Mechanical Analyzer Manual, TA Instruments, U.S.A., 2000.
58.M.S. Blanter, I.S. Golovin, H. Neuhäuser and H.-R. Sinning, “Internal Friction in Metallic Materials”, Springer-Verlag Berlin Heidelberg, 2007.
59.“Proceedings of the International Symp. on High Damping Materials (HDM-1, 2002)”, Aug.22-24, 2002, Tokyo, Japan, eds.: N. Igata and S. Takeuchi, also appearing in J. Alloys Comp. 355(2003) 1-240.
60.”Processing of the 2nd International Symp. on High Damping Materials (HDM-2,2005)”, Sep.9-10, 2005, Kyoto, Japan, eds.: N. Igata and S. Takeuchi, also appearing in Key Eng. Mater. 319 (2006) 1-240.
61.C. Zener, Phys. Rev. 60 (1941) 906.
62.H. Watanabe, T. Mukai, M. Sugioka and K. Ishikawa, Scripta Mater. 51 (2004) 291-295.
63.A. Lakki, R. Herzog, M. Weller, H. Schubert, C. Reetz, O. Görke, M. Kilo and G. Borchardt, J. Euro. Ceramic Soc. 20 (2000) 285-296.
64.G. Haneczok and M. Weller, Mater. Sci. Eng. A 370 (2004) 209-212.
65.M. Hirscher, D. Schaible and H. Kronmüller, Intermetallics 7 (1999) 347-350.
66.M. Pérez-Bravo, M.L. Nó, I. Madariaga, K. Ostolaza and J. San Juan, Mater. Sci. Eng. A 370 (2004) 240-245.
67.吳筱涵,” 製備鈦及鈦鎳合金之粉末冶金製程硏究”,國立台灣大學材料科學與工程學研究所碩士論文,2008。
68.J. Bohlen, F. Chmelík, P. Dobron, D. Letzig, P. Lukác and K.U. Kainer, J. Alloys Comp. 378 (2004) 214-219.
69.X.S. Hu, Y.K. Zhang, M.Y. Zheng and K. Wu, Scripta Mater. 52 (2005) 1141-1145.
70.X.S. Hu, K. Wu and M.Y. Zheng, Scripta Mater. 54 (2006) 1639-1643.
71.X.S. Hu, K. Wu, M.Y. Zheng, W.M. Gan and X.J. Wang, Mater. Sci. Eng. A 452-453 (2007) 374-379.
72.G.L. Hao, F.S. Han, Q.Z. Wang and J. Wu, Physica B 391 (2007) 186-192.
73.周鼎堯,”鎂合金與鈦鎳銅形狀記憶合金制振能之研究”,國立台灣大學材料科學與工程學研究所碩士論文,2006。
74.W. Riehemann and F. Abed El-Al, J. Alloys Comp. 310 (2000) 127-130.
75.C.Y. Xie, E. Carreno-Morelli and R. Schaller, Scripta Mater. 39 (1998) 225-230.
76.Z. Trojanová, P. Lukác, H. Ferkel and W. Riehemann, Mater. Sci. Eng. A 370 (2004) 154-157
77.L. Liao, X. Zhang, X. Li, H. Wang and N. Ma, Mater. Letters 61 (2007) 231-234.
78.D. Wan, J. Wang and G. Yang, “A study of the effect of Y on the mechanical properties, damping properties of high damping Mg-0.6%Zr based alloys”, Mater. Sci. Eng. A (2009) in Press.
79.D. Wan, J. Wang, L. Lin, Z. Feng and G. Yang, Physica B 403 (2008) 2438-2442.
80.Z. Zhang, X. Zeng and W. Ding, Mater. Sci. Eng. A 392 (2005) 150-155.
81.L. Liao, X. Zhang and H. Wang, Mater. Letters 59 (2005) 2702-2705.
82.J. Göken and W. Riehemann, Mater. Sci. Eng. A 324 (2002) 127-133.
83.S.K. Wu, S.H. Chang, T.Y. Chou and S. Tong, J. Alloys Comp. 465 (2008) 210-215.
84.Z. Trojanová, A. Mielczarek, W. Riehemann and P. Lukác, Composites Sci. Technol. 66 (2006) 585-590.
85.P. Lukác, Z. Trojanová, W. Riehemann and B.L. Mordike, Mater. Sci. Forum 210-213 (1996) 619-626.
86.A.A. Baker, J. Mater. Sci. 3 (1968) 412.
87.A. Wolfenden and J.M. Wolla, J. Mater. Sci. 24 (1989) 3205.
88.T. Kosugi, Mater. Sci. Eng. A 309-310 (2001) 203-206.
89.A. Granato and K. Lücke, J. Appl. Phys. 27 (1956) 789-805.
90.K. Lücke, A.V. Granato and L.J. Teutonico, J. Appl. Phys. 39 (1998) 5181.
91.J. Göken, J. Swiostek, D. Letzig and K.U. Kainer, Mater. Sci. Forum 482 (2005) 387-390.
92.X. Huang, K. Suzuki and N. Saito, Mater. Sci. Eng. A 508 (2009) 226-233.
93.W.J. Lai, Y.Y. Li, Y.F. Hsu, S. Trong and W.H. Wang, J. Alloys Comp. 479 (2009) 118-124.
94.I.A. Yakubtsov, B.J. Diak, C.A. Sager, B. Bhattacharya, W.D. MacDonald and M. Niewczas, Mater. Sci. Eng. A 496 (2008) 247-255.
95.K. Sugimoto, K. Matsui, T. Okamoto and K. Kishitake, Tran. JIM 16 (1975) 647-655.
96.M. Mabuchi, Y. Chino and H. Iwasaki, Mater. Trans. 43 (2002) 2063-2068.
97.M. Mabuchi, M. Kobata, Y. Chino and H. Iwasaki, Mater. Trans. 44 (2003) 436-439.
98.M. Weller, M. Hirscher, E. Schweizer and H. Kronmüller, J. Phys. (Paris) 6 (1996) 231-234.
99.G. Schöck, E. Bisogni and J. Shyne, Acta Metall. 12 (1964) 1466-1468.
100.P.G. Shewmon and F.N. Rhines, Trans. AIME 6 (1954) 1021.
101.Chr. Herzig, T. Przeorski and Y. Mishin, Intermetallics 7 (1999) 389-404.
102.W. Sprengel, N. Oikawa and H. Nakajima, Intermetallics 4 (1996) 185-189.
103.T.G. Byrer, E.L. White and P.D. Frost, “NASA Contractor Report”, Battelle Memorial Institute, Columbus, OH, 1963.
104.H. Takuda, H. Matsusaka, S. Kikuchi and K. Kubota, J. Mater. Sci. 37 (2002) 51-57.
105.H Takuda, T. Enami, K. Kubota and N. Hatta, J. Mater. Processing Technol. 101 (2000) 281-286.
106.H. Takuda, S. Kikuchi. T. Tsukada, K. Kubota and N. Hatta, Mater. Sci. Eng. A 271 (1999) 251-256.
107.王長寧,”冷軋對於LAZ1110合金機械性質影響之研究”,國立東華大學材料科學與工程學研究所碩士論文,2008。
108.黃振賢,”機械材料”,修訂二版,新文京開發出版有限公司,台北,2003,p.84-94。
109.T. Liu, S.D. Wu, S.X. Li and P.J. Li, Mater. Sci. Eng. A 460-461 (2007) 499-503.
110.Y.W. Kim, D.H. Kim, H.I. Lee and C.P. Hong, Scripta Mater. 38 (1998) 923-929.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top