跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李卉瑄
研究生(外文):Lee, Hui-Hsuan
論文名稱:具光伏電能擷取與電池輔助之單電感雙輸入雙輸出升降壓轉換器
論文名稱(外文):Single-Inductor Dual-Input Dual-Output Buck-Boost Converter for Battery-Assisted Photovoltaic Energy Harvesting
指導教授:陳柏宏陳柏宏引用關係
指導教授(外文):Chen, Po-Hung
口試委員:吳重雨柯明道
口試委員(外文):Wu, Chung-YuKer, Ming-Dou
口試日期:2017-01-12
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:dc-dc converter2-D adaptive on-timesingle-inductor dual-input dual-outputphotovoltaic energy harvesting
外文關鍵詞:直流電源轉換器二維自適應導通時間單電感雙輸入雙輸出太陽能能輛擷取
相關次數:
  • 被引用被引用:0
  • 點閱點閱:383
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著物聯網產品如穿戴式裝置的高度商品化,能源的需求大幅度的上升。為了確保產品操作的穩定性,必須由電池來提供穩定電力;然而,替數以萬計的裝置更換電池需要耗費大量的金錢與人力。因此,可永續利用且低汙染的獵能技術成為延長電池壽命的重要發展,其中,太陽能發電的單位面積發電量較大,已成為目前研究與商品化的主流,其相關應用包含無線智慧感測器、生醫電子元件等。若能結合電池和太陽能發電,可使系統在光照充足的情況下使用太陽能供給電源,反之則由電池供電,進而有效延長電池壽命。
本論文實現一個應用於物聯網產品的單電感雙輸入雙輸出升降壓器,輸入能源結合了鋅-空氣電池與太陽能發電,延長電池使用週期。除此之外,為了提高功率轉換效率,在使用電池當作輸入源時,會使用降壓模式來做切換,使用太陽能電池時,則是使用生降壓模式;在輸出方面,升降壓器會產生兩個輸出電壓,其電壓值為0.4-0.6伏與1-1.2伏,分別提供給低功率的數位電路與低電壓的高頻發射器使用。本論文提出的連續脈波省略調變可以在輸出兩個電壓的同時,降低兩個電壓間彼此的互穩壓效應,並在輕載時有較好的轉換效率。而對於低電壓系統而言,電壓漣波會嚴重影響系統效能,因此本論文提出一個二維自適應導通時間控制電路,能夠在輸入電壓0.55-1.4伏與輸出電壓0.4-0.6伏的範圍下達到平均2.1%的輸出電壓漣波比例。量測結果顯示最高效率可達92.5%,非常適合應用於電池與太陽能電池的混合能源系統。
In this paper, we presented a single-inductor dual-input dual-output (SIDIDO) power converter with two-dimensional adaptive on-time (2-D AOT) control for IoT applications. The proposed system combines energy from a 0.55-V to 0.7-V photovoltaic (PV) module with 1.4-V zinc-air battery to extend the battery life. The proposed converter respectively employs buck-boost mode and buck mode for PV module and the battery to produce two different output voltages. For low power digital circuits, a 0.4-0.6 V is supplied from the first output, and the other output with 1-1.2 V is designed to support RF circuits. The sequential pulse-skip-modulation (SPSM) is proposed to manage power flow of two outputs and minimize cross regulation with high light load efficiency. For low voltage systems, the output voltage ripple of the converter is important and should be well-controlled under different input and output conditions. Therefore, a 2-D AOT control is proposed to achieve an average of 2.1% voltage ripple under a 0.55-1.4 V input voltage range and a 0.4-0.6 V output voltage range. Moreover, the response time of self-tracking zero current detection (ST-ZCD) can be reduced, and dual-source efficiency are improved with the proposed 2-D AOT technique. A test chip is fabricated in TSMC 0.18 μm technology with 1.9x2.2 mm2 area. The measurement results demonstrate a 92.5% peak efficiency under an input voltage of 0.55-1.4 V with a 4.7 μH inductor.
摘 要 I
Abstract II
Acknowledgements III
Contents IV
Figure Captions VI
Table Captions IX
Chapter 1 Introduction 1
1.1 Energy Harvesting Source 1
1.1.1 Solar Cell 1
1.1.2 Thermoelectric 2
1.1.3 Piezoelectric 4
1.2 General Voltage Regulator 5
1.2.1 Switched Capacitor Circuits 5
1.2.2 Linear Regulator 6
1.2.3 Inductive Switching Regulator 7
1.2.4 Comparison 9
1.3 Motivation 10
1.4 Thesis Organization 12
Chapter 2 Basic Knowledge of Inductive Switching Converter 13
2.1 Introduction of DC-DC Converter 13
2.1.1 Converter Structure 13
2.1.2 CCM and DCM Operation 15
2.2 Power Conversion Efficiency 15
2.3 Conventional Operation Principle of CCM 18
2.3.1 Continuous Conduction Mode Operation 18
2.3.2 Pulse Width Modulation 19
2.4 Conventional Operation Principle of DCM 20
2.4.1 Discontinuous Conduction Mode 20
2.4.2 Pulse Frequency Modulator 22
2.5 Conventional Dual-Output Control 25
2.6 Conventional Dual-Source Management 28
Chapter 3 Wide Input Range SIDIDO Architecture 32
3.1 System Architecture and Design Consideration 32
3.2 Switch Matrix 33
3.3 Operation Principle and Analysis of SPSM 36
3.4 Dual-Source Management 41
3.5 Two-Dimentional Adaptive On-Time 44
Chapter 4 Circuit Implementation 49
4.1 On-Time Generator 49
4.2 Zero Current Detection 53
4.3 Sequential Pulse-Skip Modulation Logics 53
4.4 Mode Detection 54
4.5 Maximum Power Point Tracking 55
4.6 CMOS Bandgap Reference 58
4.7 Negative Voltage Generator 60
4.8 Body Bias Control 61
Chapter 5 Measurement Results & Performance Summary 62
5.1 Measurement Results 62
5.2 Performance Summary 69
Chapter 6 Conclusion and Future Works 71
6.1 Conclusion 71
6.2 Future Work 71
References 74
[1] Y. Qiu, C. V. Liempd, B. O. Veld, P. G. Blanken, and C. V. Hoof, “5 µW-to-10 mW Input Power Range Inductive Boost Converter for Indoor Photovoltaic Energy Harvesting with Integrated Maximum Power Point Tracking Algorithm,” IEEE Int. Solid-State Circuits Conference Dig. of Tech. Papers, pp. 118–119., Feb. 2011.
[2] I. Laird and Dylan D.-C. Lu, “High Step-Up DC/DC Topology and MPPT Algorithm for Use With a Thermoelectric Generator,” IEEE Trans. on Power Electronics., vol. 28, no. 7, pp. 3147–3157, Jul. 2013.
[3] P.-S. Weng, H.-Y. Tang, P.-C. Ku, and L.-H. Lu, “50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting,” IEEE J. of Solid-State Circuits, vol. 48, no. 4, pp.1031–1041, Apr. 2013.
[4] Y.-K. The and Philip K. T. Mok, “Design of Transformer-Based Boost Converter for High Internal Resistance Energy Harvesting Sources With 21 mV Self-Startup Voltage and 74% Power Efficiency,” IEEE J. of Solid-State Circuits, vol. 49, no. 11, pp.2694–2704, Nov. 2014.
[5] Geffrey K. Ottman, Heath F. Hofmann, Archin C. Bhatt, and George A. Lesieutre, “Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply,” IEEE Trans. on Power Electronics., vol. 17, no. 5, pp. 669–676, Sep. 2012.
[6] K.-C. Lin, “A Wide Load Range Multi-Mode Digital Buck Converter for Photovoltaic Energy Harvesting,” National Chiao-Tung University, master’s dissertation, Apr. 2015.
[7] W.-C. Chen, D.-L. Ming, Y.-P. Su, Y.-H. Lee, and K.-H. Chen “A Wide Load Range and High Efficiency Switched-Capacitor DC-DC Converter with Pseudo-Clock Controlled Load-dependent Frequency,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, no. 3, pp. 911–921, Mar. 2014.
[8] Vincent W. Ng, and Seth R. Sanders “A High-Efficiency Wide-Input-Voltage Range Switched Capacitor Point-of-Load DC–DC Converter,” IEEE Trans. on Power Electronics., vol. 28, no. 9, pp. 4335–4341, Sep. 2013.
[9] J. Kim, Philip K. T. Mok, C. Kim " A 0.15V-Input Energy-Harvesting Charge Pump with Switching Body Biasing and Adaptive Dead-Time for Efficiency Improvement," IEEE Int. Solid-State Circuits Conference Dig. of Tech. Papers, pp. 394-395, Feb. 2014.
[10] H.-P. Le, Seth R. Sanders, and E. Alon “Design Techniques for Fully Integrated Switched-Capacitor DC-DC Converters” IEEE J. of Solid-State Circuits, vol. 46, no. 9, pp.2120–2131, Nov. 2011.
[11] X. Ming, Z.-k. Zhou, and B. Z. “A Low-Power Ultra-Fast Capacitor-Less LDO with Advanced Dynamic Push-Pull Techniques” IEEE Int. Conference on VLSI and System-on-Chip, pp. 54–59, Oct. 2011.
[12] M. Al-Shyoukh, H. Lee, and R. Perez, “A Transient-Enhanced Low-Quiescent Current Low-Dropout Regulator With Buffer Impedance Attenuation” IEEE J. of Solid-State Circuits, vol. 42, no. 8, pp.1732–1742, Aug. 2007.
[13] B. J. Culpepper, H. Suzuki “Switching dc-to-dc converter with discontinuous pulse skipping and continuous operation modes without external sense resistor” US patent 6,396,252, May 2002.
[14] Majid, et al., “Low power stand-by for switched-mode power supply circuit with burst mode operation,” US patent 5,812,383, Sep. 1998.
[15] M. Brown, Practical Switching Power Supply Design. San Diego, CA: Academic, 1990.
[16] D. Ma, W.-H. Ki, C. Y. Tsui, and P. K. T. Mok, “Single-inductor multiple-output switching converters with time-multiplexing control in dis- continuous conduction mode,” IEEE J. of Solid-State Circuits, vol. 38, pp. 89–100, Jan. 2003.
[17] H. P. Le, C. S. Chae, K. C. Lee, S. W. Wang, G. H. Cho, and G. H. Cho, "A Single-Inductor Switching DC–DC Converter with Five Outputs and Ordered Power-Distributive Control," IEEE J. of Solid-State Circuits, vol. 42, no. 12, pp. 2706-2714, Dec. 2007.
[18] D. Ma, W. H. Ki, and C. Y. Tsui, “A Pseudo-CCM/DCM SIMO switching converter with freewheel switching,” IEEE J. of Solid-State Circuits, vol. 38, no. 6, pp. 1007–1014, Jun. 2003.
[19] M. H. Huang and K. H. Chen, "Single-Inductor Multi-Output (SIMO) DC-DC Converters With High Light-Load Efficiency and Minimized Cross-Regulation for Portable Devices," IEEE J. of Solid-State Circuits, vol. 44, no. 4, pp. 1099-1111, Apr. 2009.
[20] X. Jing, P. K. T. Mok, and M. C. Lee, "A Wide-Load-Range Constant-Charge-Auto-Hopping Control Single-Inductor-Dual-Output Boost Regulator with Minimized Cross-Regulation," IEEE J. of Solid-State Circuits, vol. 46, no. 10, pp. 2350-2362, Oct. 2011.
[21] M. Y. Jung, S. H. Park, J. S. Bang, and G. H. Cho, "An Error-Based Controlled Single-Inductor 10-Output DC-DC Buck Converter With High Efficiency Under Light Load Using Adaptive Pulse Modulation," IEEE J. of Solid-State Circuits, vol. 50, no. 12, pp. 2825-2838, Dec. 2015.
[22] S. Bandyopadhyay and A. P. Chandrakasan, “Platform Architecture for Solar, Thermal, and Vibration Energy Combining with MPPT and Single Inductor,” IEEE J. of Solid-State Circuits, vol. 47, no. 9, pp. 2199-2215, Sept. 2012.
[23] P. S. Weng, H. Y. Tang, P. C. Ku and L. H. Lu, "50 mV-Input Batteryless Boost Converter for Thermal Energy Harvesting," IEEE J. of Solid-State Circuits, vol. 48, no. 4, pp. 1031-1041, April 2013.
[24] M. Dini, A. Romani, M. Filippi, V. Bottarel, G. Ricotti and M. Tartagni, "A Nanocurrent Power Management IC for Multiple Heterogeneous Energy Harvesting Sources," IEEE Trans. on Power Electronics, vol. 30, no. 10, pp. 5665-5680, Oct. 2015.
[25] P. H. Chen, C. S. Wu, and K. C. Lin, "A 50 nW-to-10 mW Output Power Tri-Mode Digital Buck Converter With Self-Tracking Zero Current Detection for Photovoltaic Energy Harvesting," IEEE J. of Solid-State Circuits, vol. 51, no. 2, pp. 523-532, Feb. 2016.
[26] G. Chowdary, A. Singh, and S. Chatterjee, "An 18 nA, 87% Efficient Solar, Vibration and RF Energy-Harvesting Power Management System With a Single Shared Inductor," IEEE J. of Solid-State Circuits, vol. 51, no. 10, pp. 2501-2513, Oct. 2016.
[27] R. J. M. Vullers, R. van Schaijk, I. Doms, C. van Hoof, and R. Mertens, "Micropower Energy Harvesting," Solid-State Electronics, vol. 53, Issue 7, pp. 684-693, Jul. 2009.
[28] K. Kadirvel, Y. Ramadass, U. Lyles, J. Carpenter, V. Ivanov, V. McNeil, A. P. Chandrakasan, and Brian L. S. Chan, "A 330nA Energy-Harvesting Charger with Battery Management for Solar and Thermoelectric Energy Harvesting," IEEE Int. Solid-State Circuits Conference Dig. of Tech. Papers, pp. 106-108, Feb. 2012.
[29] Y. Nakase, S. Hirose, H. Onoda, Y. Ido, Y. Shimizu, T. Oishi, T. Kumamoto, and T. Shimizu, “0.5 V Start-Up 87% Efficiency 0.75 mm² On-Chip Feed-Forward Single-Inductor Dual-Output (SIDO) Boost DC-DC Converter for Battery and Solar Cell Operation Sensor Network Micro-Computer Integration,” IEEE J. of Solid-State Circuits, vol.48, no.8, pp.1933-1942, Aug. 2013.
[30] S. Kim and G. A. Rincón-Mora, "Dual-Source Single-Inductor 0.18μm CMOS Charger-Supply with Nested Hysteretic and Adaptive On-Time PWM Control," IEEE Int. Solid-State Circuits Conference Dig. of Tech. Papers, pp. 400-401, Feb. 2014.
[31] H. J. Chen, Y. H. Wang, P. C. Huang, and T. H. Kuo, "An Energy-Recycling Three-Switch Single-Inductor Dual-Input Buck/Boost DC-DC Converter with 93% Peak Conversion Efficiency and 0.5mm2 Active Area for Light Energy Harvesting," IEEE Int. Solid-State Circuits Conference Dig. of Tech. Papers, pp. 1-3, Feb. 2015.
[32] D. El-Damak and A. P. Chandrakasan, "A 10 nW–1 µW Power Management IC With Integrated Battery Management and Self-Startup for Energy Harvesting Applications," IEEE J. of Solid-State Circuits, vol. 51, no. 4, pp. 943-954, Apr. 2016.
[33] R. Damodaran Prabha and G. A. Rincón-Mora, "0.18-μm Light-Harvesting Battery-Assisted Charger–Supply CMOS System," IEEE Trans. on Power Electronics, vol. 31, no. 4, pp. 2950-2958, Apr. 2016.
[34] H. H. Lee and P. H. Chen, “A Single-Inductor Dual-Input Dual-Output (SIDIDO) Power Management with Sequential Pulse-Skip Modulation for Battery/PV Hybrid Systems,” IEEE Asian Solid-State Circuits Conference, will be published, Nov. 2016.
[35] B. Sahu and G. A. Rincon-Mora, “An accurate, low-voltage, CMOS switching power supply with adaptive on-time pulse-frequency modulation (PFM) control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 2, pp. 312–321, Feb. 2007
[36] H. H. Wu, C. L. Wei, Y. C. Hsu and R. B. Darling, “Adaptive Peak-Inductor Current Controlled PFM Boost Converter with A Near Threshold Startup Voltage and High Efficiency,” IEEE Trans. on Power Electronics., vol. 30, no. 4, pp.1956-1965, May 2014.
[37] X. Zhang, P. H. Chen, Y. Okuma, K. Ishida, Y. Ryu, K. Watanabe, T. Sakurai, and M. Takamiya, “A 0.6 V input CCM/DCM operating digital buck converter in 40 nm CMOS,” IEEE J. of Solid-State Circuits, vol. 49, no. 11, pp. 2377–2386, Aug. 2014.
[38] D. Ma, W. H. Ki, C. Y. Tsui, and P. K. T. Mok, "Single-Inductor Multiple-Output Switching Converters with Time-Multiplexing Control in Discontinuous Conduction Mode," IEEE J. of Solid-State Circuits, vol. 38, no. 1, pp. 89-100, Jan 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top