朱啟泰。1993。耐甲苯且能分解苯甲酸微生物之篩選。東吳大學微生物學系學士論文。
辛玫芬。1993。甲苯耐受性細菌在液體培養下培養條件對生長的影響。東吳大學微生物學系學士論文。
魏吉良。1994。甲苯耐受性細菌脂肪酸分析方法之建立與耐性之比較。東吳大學微生物學系學士論文。
高小薇。1994。耐甲苯細菌之鑑定。東吳大學微生物學系學士論文。
謝維翰。1999。耐有機溶劑菌株Pseudomonas putida的冷凍保存效率提升。東吳大學微生物學系學士論文。
顏嘉怡。2002。海洋嗜熱洋菜分解細菌與其洋菜酶之定性研究。東吳大學微生物學系碩士論文。陳奕超。2002。甲苯耐性菌株耐性機制的研究。東吳大學微生物學系碩士論文。陳明燦。2003。耐甲苯細菌對單環芳香族化合物降解及培養狀態對耐性的影響。東吳大學微生物學系學士論文。
Aono, R. and H. Kobayashi. 1997. Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12. Appl. Environ. Microbiol. 63:3637-3642.
Arnoff, S. C. 1988. Outer membrane permeability in Pseudomonas cepacia:diminshed porin content in a -lactam-resistant mutant and in resistant cystic fibrosis isolates. Antimicrob. Agents Chemother. 32:1636-1639.
Aucken, H. M. and T. L. Pitt. 1993. Lipopolysaccharide profile typing as a technique for comparative typing of gram-negative bacteria. J. Clin. Microbiol. 31:1286-1289.
Bridson, E. Y. 1978. Natural and synthetic culture media for bacteria. CRC Handbook Series in Nutrition and Food; Section G, Volume III, Culture Media for Microorganisms and Plant(M. Rechcigl, Jr. ed. ),pp. 91-281. CRC Press, Cleveland USA.
Cattoir, V. 2004. [Efflux-mediated antibiotics resistance in bacteria]. Pathol. Biol. (Paris) 52:607-616.
Chang, B. V., W. B. Wu, and S. Y. Yuan. 1997. Biodegradation of benzene, toluene, and other aromatic compounds by Pseudmonas sp. D8. Chemosphere 35:2807-2815.
Cruden, D. L., J. H. Wolfram, R. D. Rogers, and D. T. Gibson. 1992. Physiological properties of a Pseudomonas strain which grows with p-xylene in a two-phase (organic-aqueous) medium. Appl. Environ. Microbiol. 58:2723-2729.
Fukumori, F., H. Hirayama, H. Takami, A. Inoue, and K. Horikoshi. 1998. Isolation and transposon mutagenesis of a Pseudomonas putida KT2442 toluene-resistant variant: involvement of an efflux system in solvent resistance. Extremophiles. 2:395-400.
Hartmans, S., J. P. Smits, M. J. van der Werf, F. Volkering, and J. A. de Bont. 1989. Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X. Appl. Environ. Microbiol. 55:2850-2855.
Heipieper, H. J., R. Diefenbach, and H. Keweloh. 1992. Conversion of cis unsaturated fatty acids to trans, a possible mechanism for the protection of phenol-degrading Pseudomonas putida P8 from substrate toxicity. Appl. Environ. Microbiol. 58:1847-1852.
Heipieper, H. J. and J. A. de Bont . 1994. Adaptation of Pseudomonas putida S12 to ethanol and toluene at the level of fatty acid composition of membranes. Appl. Environ. Microbiol. 60:4440-4444.
Huertas, M. J., E. Duque, S. Marques, and J. L. Ramos. 1998. Survival in soil of different toluene-degrading Pseudomonas strains after solvent shock. Appl. Environ. Microbiol. 64:38-42.
Huertas, M. J., E. Duque, L. Molina, R. Rossello-Mora, G. Mosqueda, P. Godoy, B. Christensen, S. Molin, and J. L. Ramos. 2000. Tolerance to sudden organic solvent shocks by soil bacteria and characterization of Pseudomonas putida strains isolated from toluene polluted sites. Environ. Sci. Technol. 34:3395-3400.
Ingram, L. O. 1986. Microbial tolerance to alcohols: role of the cell membrane. Trends Biotechnol. 4:40-44.
Inoue, A. and K. Horikoshi. 1989. A Pseudomonas thrives in high concentration of toluene. Nature 338:264-265.
Inoue, A. and K. Horikoshi. 1991. Estimation of solvent-toluence of bacteria by the solvent parameter logP. J. Ferm. Bioeng. 71:194-196.
Inoue, A., M. Yamamoto, and K. Horikoshi. 1991. Pseudomonas putida which can grow in the presence of toluene. FEMS Microbiol. Ecol. 54:141-155.
Keweloh, H. and H. J. Heipieper. 1996. Trans unsaturated fatty acids in bacteria. Lipids 31:129-137.
Keweloh, H., R. Diefenbach, and H. J. Rehm. 1991. Increase of phenol tolerance of Escherichia coli by alterations of the fatty acid composition of the membrane lipids. Arch. Microbiol. 157:49-53.
Khmelnitsky, Y. L., A. V. Levashov, N. L. lychko, and K. Martinek. 1989. Engineering biocatalytic systems in organic media with low water content. Enzyme Microb. Technol. 10:710-724.
Kieboom, J., J. J. Dennis, G. J. Zylstra, and J. A. de Bont. 1998. Active efflux of organic solvents by Pseudomonas putida S12 is induced by solvents. J. Bacteriol. 180:6769-6772.
Kim, K., S. Lee, K. Lee, and D. Lim. 1998. Isolation and characterization of toluene-sensitive mutants from the toluene-resistant bacterium Pseudomonas putida GM73. J. Bacteriol. 180:3692-3696.
Kobayashi, H., K. Uematsu, H. Hirayama, and K. Horikoshi. 2000. Novel toluene elimination system in a toluene-tolerant microorganism. J. Bacteriol. 182:6451-6455.
Kobayashi, H., H. Takami, H. Hirayama, K. Kobata, R. Usami, and K. Horikoshi. 1999. Outer membrane changes in a toluene-sensitive mutant of toluene-tolerant Pseudomonas putida IH-2000. J. Bacteriol. 181:4493-4498.
Kohler, T., J. C. Pechere, and P. Plesiat. 1999. Bacterial antibiotic efflux systems of medical importance. CMLS, Cell. Mol. Life Sci. 56:771-778.
Krieg, N. R. and J. G. Holt. 1984. Bergey's Manual of Systematic Bacteriology. Willians and Wilikins Baltimore. Md 21202. U. S. A.
Martinez, d. T. and I. Moriyon. 1993. The outer membranes of Brucella spp. are not barriers to hydrophobic permeants. J. Bacteriol. 175:5273-5275.
Mosqueda, G. and J. L. Ramos. 2000. A set of genes encoding a second toluene efflux system in Pseudomonas putida DOT-T1E is linked to the tod genes for toluene metabolism. J. Bacteriol. 182:937-943.
Neidhardt, F. C., J. L. Ingram, and M. Schaechter. 1990. Structure and function of bacterial cell parts. In: Physiology of the bacterial cell, a molecular approach. Sinauer Associates, Inc. Sunderland.
Nikaido, H. and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49:1-32.
Nikaido, H., E. Y. Rosenberg, and J. Foulds. 1983. Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J. Bacteriol. 153:232-240.
Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178:5853-5859.
Nishimori, E., K. Kita-Tsukamoto, and H. Wakabayashi. 2000. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 50 Pt 1:83-89.
Paulsen, I. T., M. H. Brown, and R. A. Skurray. 1996. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60:575-608.
Pinkart, H. C. Cell Envelope Changes in Solvent-Tolerant and Solvent-Sensitive Pseudomonas putida Strains following Exposure to o-Xylene. 62, 1129-1132. 1996.
Plesiat, P. and H. Nikaido. 1992. Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol. Microbiol. 6:1323-1333.
Ramos, J. L., E. Duque, M. J. Huertas, and A. Haidour. 1995. Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons. J. Bacteriol. 177:3911-3916.
Ramos, J. L., E. Duque, J. J. Rodriguez-Herva, P. Godoy, A. Haidour, F. Reyes, and A. Fernandez-Barrero. 1997. Mechanisms for solvent tolerance in bacteria. J. Biol. Chem. 272:3887-3890.
Ramos, J. L., E. Duque, P. Godoy, and A. Segura. 1998. Efflux pumps involved in toluene tolerance in Pseudomonas putida DOT-T1E. J. Bacteriol. 180:3323-3329.
Rojas, A., E. Duque, G. Mosqueda, G. Golden, A. Hurtado, J. L. Ramos, and A. Segura. 2001. Three efflux pumps are required to provide efficient tolerance to toluene in Pseudomonas putida DOT-T1E. J. Bacteriol. 183:3967-3973.
Rojas, A., E. Duque, A. Schmid, A. Hurtado, J. L. Ramos, and A. Segura. 2004. Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Appl. Environ. Microbiol. 70:3637-3643.
Sikkema, J., J. A. de Bont, and B. Poolman. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269:8022-8028.
Sikkema, J., J. A. de Bont, and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59:201-222.
Stackebrandt, E. and O. Charfreitag. 1990. Partial 16S rRNA primary structure of five Actinomyces species: phylogenetic implications and development of an Actinomyces israelii-specific oligonucleotide probe. J. Gen. Microbiol. 136:37-43.
Wang, Y., Z. Zhang, and J. Ruan. 1996. Phylogenetic analysis reveals new relationships among members of the genera Microtetraspora and Microbispora. Int. J. Syst. Bacteriol. 46:658-663.
Weber, F. J., L. P. Ooijkaas, R. M. Schemen, S. Hartmans, and J. A. de Bont. 1993. Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents. Appl. Environ. Microbiol. 59:3502-3504.
Wery, J., B. Hidayat, J. Kieboom, and J. A. de Bont. 2001. An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J. Biol. Chem. 276:5700-5706.
Wolfram, J. H. and R. D. Rogers. 1989. Novel Pseudomonas micro-organism for biodegradation of liquid scintillation cocktails. U. S. Patent. 4:863-872.