|
1.Francis, S.H., et al., Cyclic nucleotide phosphodiesterases: relating structure and function. Progress in nucleic acid research and molecular biology, 2000. 65: p. 1-52. 2.Bender, A.T ., et al., Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacological Reviews, 2006. 58(3): p. 488-520. 3.Degerman, E ., et al., Manganiello, Structure, localization, and regulation of cGMP-inhibited phosphodiesterase (PDE3). Journal of Biological Chemistry, 1997. 272(11): p. 6823-6826. 4.Houslay, M.D., et al., PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. Biochemical Journal, 2003. 370(Pt 1): p. 1. 5.Cote, R., et al.,Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5. International journal of impotence research, 2004. 16: p. S28-S33. 6.Loughney, K., et al., Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3′, 5′-cyclic nucleotide phosphodiesterases. Journal of Biological Chemistry, 1996. 271(2): p. 796-806. 7.Meacci, E., et al., Molecular cloning and expression of human myocardial cGMP-inhibited cAMP phosphodiesterase. Proceedings of the National Academy of Sciences, 1992. 89(9): p. 3721. 8.Kostic, M., et al., Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. Journal of molecular and cellular cardiology, 1997. 29(11): p. 3135-3146. 9.Senzaki, H., et al., Cardiac phosphodiesterase 5 (cGMP-specific) modulates ß-adrenergic signaling in vivo and is down-regulated in heart failure. The FASEB Journal, 2001. 15(10): p. 1718-1726. 10.Soderling, S., et al., Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. Proceedings of the National Academy of Sciences, 1998. 95(15): p. 8991. 11.Ónody, A., et al., Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray study. FEBS letters, 2003. 536(1-3): p. 35-40. 12.Nair, K.S., et al., DHEA in elderly women and DHEA or testosterone in elderly men. New England Journal of Medicine, 2006. 355(16): p. 1647-1659. 13.Baulieu, E.E., et al., Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proceedings of the National Academy of Sciences, 2000. 97(8): p. 4279. 14.徐源田, 台灣農家要覽. 1992. 15.周道成, 山藥的妙用食療法. 2004. 16.Lin, J.T., et al., Determination of steroidal saponins in different organs of yam (< i> Dioscorea pseudojaponica Yamamoto). Food Chemistry, 2008. 108(3): p. 1068-1074. 17.Rose, M.C., et al., Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiological reviews, 2006. 86(1): p. 245-278. 18.Sanders, J.L., et al., Cardiovascular disease is associated with greater incident dehydroepiandrosterone sulfate decline in the oldest old: the cardiovascular health study all stars study. Journal of the American Geriatrics Society, 2010. 58(3): p. 421-426. 19.黃佩環, 以體內試驗探討山藥、東哥阿里、精胺酸、威而剛對心臟磷酸二酯解酶的影響. 2010. 20.陳博玄, Tongkat Ail(Eurycoma longifolia)降低PDE5A基因表現及增加血漿中NO和cGMP濃度的探討. 2009. 21.Arcamone, F., et al., Adriamycin, 14‐hydroxydaimomycin, a new antitumor antibiotic from S. Peucetius var. caesius. Biotechnology and bioengineering, 1969. 11(6): p. 1101-1110. 22.Singal, P., et al., Adriamycin-induced heart failure: mechanisms and modulation. Molecular and cellular biochemistry, 2000. 207(1): p. 77-86. 23.Young, R.C., et al., The anthracycline antineoplastic drugs. New England Journal of Medicine, 1981. 305(3): p. 139-153. 24.Booser, D., et al., Anthracycline antibiotics in cancer therapy. Focus on drug resistance. Drugs, 1994. 47(2): p. 223. 25.Lefrak, E.A., et al., A clinicopathologic analysis of adriamycin cardiotoxicity. Cancer, 1973. 32(2): p. 302-314. 26.Singal, P.K., Subcellular effects of adriamycin in the heart: a concise review. Journal of molecular and cellular cardiology, 1987. 19(8): p. 817-828. 27.Buja, L.M., et al., Cardiac ultrastructural changes induced by daunorubicin therapy. Cancer, 1973. 32(4): p. 771-788. 28.Singal, P., et al., Adriamycin cardiomyopathy: pathophysiology and prevention. The FASEB Journal, 1997. 11(12): p. 931-936. 29.Arena, E., et al., DNA, RNA and protein synthesis in heart, liver and brain of mice treated with daunorubicin or Adriamycin. Int Res Commun Syst Med Sci, 1974. 2: p. 1053-1061. 30.Bristow, M.R., et al., Acute and chronic cardiovascular effects of doxorubicin in the dog: the cardiovascular pharmacology of drug-induced histamine release. Journal of cardiovascular pharmacology, 1980. 2(5): p. 487. 31.Tong, J., et al., Myocardial adrenergic changes at two stages of heart failure due to adriamycin treatment in rats. American Journal of Physiology-Heart and Circulatory Physiology, 1991. 260(3): p. H909-H916. 32.Gosálvez, M., et al., Inhibition of sodium-potassium-activated adenosine 5′-triphosphatase and ion transport by adriamycin. Cancer Research, 1979. 39(1): p. 257. 33.Singal, P.K., et al., Adriamycin stimulates low-affinity Ca2+ binding and lipid peroxidation but depresses myocardial function. American Journal of Physiology-Heart and Circulatory Physiology, 1986. 250(3): p. H419-H425. 34.Jaenke, R., et al., An anthracycline antibiotic-induced cardiomyopathy in rabbits. Laboratory investigation; a journal of technical methods and pathology, 1974. 30(3): p. 292. 35.Doroshow, J.H., et al., Effect of anthracycline antibiotics on oxygen radical formation in rat heart. Cancer Research, 1983. 43(2): p. 460. 36.Kalyanaraman, B., et al., Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Biochimica et Biophysica Acta (BBA)-General Subjects, 1980. 630(1): p. 119-130. 37.Revis, N., et al., Glutathione peroxidase activity and selenium concentration in the hearts of doxorubicin-treated rabbits. Journal of molecular and cellular cardiology, 1978. 10(10): p. 945-951. 38.N, S., et al., Probucol promote endogenous antioxidants and provides protection against adriamycin-induced cardiomyopathy in rats. 1994. 39.Singal, P., et al., Changes in lysosomal morphology and enzyme activities during the development of adriamycin-induced cardiomyopathy. The Canadian journal of cardiology, 1985. 1(2): p. 139. 40.Myers., et al., Adriamycin: the role of lipid peroxidation in cardiac toxicity and tumor response. Science, 1977. 197(4299): p. 165-167. 41.Zhang, J., et al., Doxorubicin-induced apoptosis in spontaneously hypertensive rats: differential effects in heart, kidney and intestine, and inhibition by ICRF-187. Journal of molecular and cellular cardiology, 1996. 28(9): p. 1931-1943. 42.JK, A., et al., Preconditioning inhibits anthracycline induced apoptosis in neonatal rat ventricular myocytes. 1998. 43.Kumar, D., et al., Apoptosis in Isolated Adult Cardiomyocytes Exposed to Adriamycina. Annals of the New York Academy of Sciences, 1999. 874(1): p. 156-168. 44.Kaul, N., et al., Free radicals and the heart. Journal of pharmacological and toxicological methods, 1993. 30(2): p. 55-67. 45.Chalcroft, S., et al., Fine structural changes in rat myocardium induced by daunorubicin. Pathology, 1973. 5(2): p. 99-105. 46.Weinberg, L.E., et al., Refractory heart failure and age-related differences in adriamycin-induced myocardial changes in rats. Canadian journal of physiology and pharmacology, 1987. 65(9): p. 1957. 47.CMR, D., et al., Susceptibility to adriamycin-induced cardiotoxicity increase only up to certain age. 1990. 48.Schaub, M.C., et al., Integration of calcium with the signaling network in cardiac myocytes. Journal of molecular and cellular cardiology, 2006. 41(2): p. 183-214. 49.Endoh, M., et al., Basic and clinical characteristics of PDE 3 inhibitors as cardiotonic agents. Cardiovascular drugs and therapy, 2007. 21(3): p. 135-139. 50.Zaccolo, M., et al., cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ Res, 2007. 100(11): p. 1569-78. 51.RK, S., et al., Phosphodiesterases inhibitors. 1996. 52.Shakur, Y., et al., Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Progress in nucleic acid research and molecular biology, 2000. 66: p. 241-277. 53.Choi, Y.H., et al., Identification of a novel isoform of the cyclic-nucleotide phosphodiesterase PDE3A expressed in vascular smooth-muscle myocytes. Biochemical Journal, 2001. 353(Pt 1): p. 41. 54.Jaski, B.E., et al., Positive inotropic and vasodilator actions of milrinone in patients with severe congestive heart failure. Dose-response relationships and comparison to nitroprusside. Journal of Clinical Investigation, 1985. 75(2): p. 643. 55.Benotti, J.R., et al., Hemodynamic assessment of amrinone. New England Journal of Medicine, 1978. 299(25): p. 1373-1377. 56.Baim, D.S., et al., Evaluation of a new bipyridine inotropic agent—milrinone—in patients with severe congestive heart failure. New England Journal of Medicine, 1983. 309(13): p. 748-756. 57.DiBianco, R., et al., A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. New England Journal of Medicine, 1989. 320(11): p. 677-683. 58.Ding, B., et al., Functional Role of Phosphodiesterase 3 in Cardiomyocyte Apoptosis Implication in Heart Failure. Circulation, 2005. 111(19): p. 2469-2476. 59.Tomita, H., et al., Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to β-adrenergic receptor stimulation. Circulation research, 2003. 93(1): p. 12-22. 60.Yan, C., et al., Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circulation research, 2007. 100(4): p. 489-501. 61.Yan, C., et al., Activation of extracellular signal-regulated kinase 5 reduces cardiac apoptosis and dysfunction via inhibition of a phosphodiesterase 3A/inducible cAMP early repressor feedback loop. Circ Res, 2007. 100(4): p. 510-519. 62.Abi-Gerges, A., et al., Decreased expression and activity of cAMP phosphodiesterases in cardiac hypertrophy and its impact on β-adrenergic cAMP signals. Circulation research, 2009. 105(8): p. 784-792. 63.Miller, C.L., et al., Targeting cyclic nucleotide phosphodiesterase in the heart: therapeutic implications. Journal of cardiovascular translational research, 2010. 3(5): p. 507-515. 64.Loughney, K., et al., Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′, 5′-cyclic nucleotide phosphodiesterase. Gene, 1998. 216(1): p. 139-147. 65.Rosen, R.C., et al., Overview of phosphodiesterase 5 inhibition in erectile dysfunction. The American journal of cardiology, 2003. 92(9): p. 9-18. 66.Corbin, J., et al., Mechanisms of action of PDE5 inhibition in erectile dysfunction. International journal of impotence research, 2004. 16: p. S4-S7. 67.Kumar, P., et al., Tang, Phosphodiesterase 5 inhibition in heart failure: mechanisms and clinical implications. Nature Reviews Cardiology, 2009. 6(5): p. 349-355. 68.Kukreja, R.C., et al., Cardioprotection with phosphodiesterase-5 inhibition--a novel preconditioning strategy. Journal of molecular and cellular cardiology, 2004. 36(2): p. 165-173. 69.Kass, D.A., et al., Phosphodiesterase Type 5. Circulation research, 2007. 101(11): p. 1084-1095. 70.Pyriochou, A., et al., The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. Journal of cellular physiology, 2007. 211(1): p. 197-204. 71.Salloum, F., et al., Sildenafil induces delayed preconditioning through inducible nitric oxide synthase–dependent pathway in mouse heart. Circulation research, 2003. 92(6): p. 595-597. 72.Das, A., et al., Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. Journal of Biological Chemistry, 2005. 280(13): p. 12944-12955. 73.Fisher, P.W., et al., Phosphodiesterase-5 inhibition with sildenafil attenuates cardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation, 2005. 111(13): p. 1601-1610. 74.Ockaili, R., et al., Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. American Journal of Physiology-Heart and Circulatory Physiology, 2002. 283(3): p. H1263-H1269. 75.Takimoto, E., et al., Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. The Journal of clinical investigation, 2009. 119(2): p. 408. 76.Vandeput, F., et al., cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. Journal of Pharmacology and Experimental Therapeutics, 2009. 330(3): p. 884-891. 77.Lukowski, R., et al., Cardiac hypertrophy is not amplified by deletion of cGMP-dependent protein kinase I in cardiomyocytes. Proceedings of the National Academy of Sciences, 2010. 107(12): p. 5646. 78.Nagendran, J., et al., Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation, 2007. 116(3): p. 238-248. 79. Jing-Ping Lin., et al., Genome-Wide Linkage and Association Scans for Quantitative Trait Loci of Serum Lactate Dehydrogenase—The Framingham Heart Study. Human Genomics and Proteomics, 2010.2(1) 80. Vasudevan,., et al., Lactic dehydrogenase isoenzyme determination in the diagnosis of acute myocardial infarction. Circulation, 1978. 57(6) : p.1055-1057. 81.Banerjee, B., et al., Biochemical effects of some pesticides on lipid peroxidation and free-radical scavengers. Toxicology letters, 1999. 107(1-3): p. 33-47. 82.Conner, E.M., et al., Inflammation, free radicals, and antioxidants. Nutrition, 1996. 12(4): p. 274-277. 83.Storz, G., et al., Oxidative stress. Current opinion in microbiology, 1999. 2(2): p. 188-194. 84.Aruoma., et al., Free radicals, oxidative stress, and antioxidants in human health and disease. Journal of the American Oil Chemists'' Society, 1998. 75(2): p. 199-212. 85.Elberry, A.A., et al., Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food and chemical toxicology, 2010. 48(5): p. 1178-1184. 86.Riad, A., et al., Pretreatment with statin attenuates the cardiotoxicity of Doxorubicin in mice. Cancer Research, 2009. 69(2): p. 695. 87.Koka, S., et al., Long-acting phosphodiesterase-5 inhibitor tadalafil attenuates doxorubicin-induced cardiomyopathy without interfering with chemotherapeutic effect. J Pharmacol Exp Ther, 2010. 334(3): p. 1023-30.
|