跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.168) 您好!臺灣時間:2025/09/05 08:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳章榮
研究生(外文):Jang-Rung Wu
論文名稱:沸石/高分子奈米複合薄膜之製備與特性研究
論文名稱(外文):The Study of Zeolite/Polymer Nanocomposite Thin Films and Their Properties
指導教授:林炯芳
指導教授(外文):Chiung-Fang Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:106
中文關鍵詞:沸石/聚酰亞胺複合薄膜氣霧沉積系統低介電常數
外文關鍵詞:Silicalite-1PAAPIzeolite nanocomposite filmsliquid spray systemlow dielectric constant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:507
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出製備沸石複合薄膜的一種簡單製程,由Silicalite-1 和PAA 依最
佳比例混合成奈米懸浮液,再藉由本實驗室自行設計的氣霧沉積系統來製備
沸石/聚酰亞胺複合薄膜;藉由調整製程參數(基板溫度、主空氣流量、輔助空
氣流量、鍍膜時間)來獲得品質最佳的複合薄膜,再藉由XRD、FT-IR、BET、
SEM、TEM、AFM、接觸角等儀器分析薄膜性質。
結果顯示本論文成功製備出奈米沸石複合薄膜,本系統鍍膜能在沉積薄
膜同時去除模板,相較於旋轉塗佈法在薄膜製備完後須經過高溫煅燒後才能
去除模板,且過程中非常容易使薄膜產生裂縫,所以本系統具有避免在煅燒
時使薄膜產生裂縫的優點。
Silicalite-1 沸石和一般低介電材料所用矽材(SiCOH..等)相比,具有較高的
比表面積和機械強度,但因其表面SiOH 造成部分親水性及顆粒附著力差因
而限制其應用,許多研究為了將其應用在低介電常數材料上,以許多繁複的
改質方法雖能獲得更佳薄膜,但也限制其商業潛力。本論文以Silicalite-1 與
PAA 奈米懸浮液混合並以氣霧沉積系統製備複合薄膜,不但製程簡單,疏水
性及附著力及平整度均達到一定水準,同時也具有低的介電常數(k=2.17),使
其更具應用價值。

In this study, a simple fabrication of zeolite nanocomposite thin films,
deposited by vaporizing a mixing Silicalite-1 and PAA suspension to a set ratio,
were prepared by our self-designed liquid spray system. Investigated the effects
of the operating parameters such as the heating temperature on substrate, the rates
of the main air, auxiliary air flow and deposition time, could prepared the good
quality nanocomposite films. The crystalline, surface morphology, and chemical
composition of prepared samples would performed by the instruments of XRD,
FT-IR, BET, TGA, SEM, TEM ,AFM and Constant Angle Meter.
The result showed that zeolite nanocomposite thin films deposited by our
system is success and also remove the template agents simultaneously .Compared
with spin-coating method ,need to remove the template agents under
high-temperature calcinations and therefore difficult to avoid the film cracks.
Many researches hoped to develop Silicalite-1 membrane as low-k materials
as it has good mechanical strength and high porosity more than traditional silicon
material. However, the adhesion and hydrophobicity far worse compared of
colloids such as macromolecules, the problem mentioned have to effectively
solved in order to the commercialize stage. Based on the above fabricating, our
zeolite thin films having higher adhesion and hydrophobicity and good flatness,
also owned a low dielectric constant (k= 2.17), it shows more potential
commerical development is to be expected.

摘要 ........................................................................................................................... I
Abstract .................................................................................................................... II
致謝 ........................................................................................................................ IV
總目錄 ..................................................................................................................... V
圖目錄 .................................................................................................................. VII
表目錄 .................................................................................................................. XII
第一章 緒論 ............................................................................................................ 1
1-1. 沸石 ........................................................................................................ 1
1-2. Silicalite-1 沸石 ..................................................................................... 3
1-3. 沸石薄膜 ................................................................................................ 4
1-4. 介電材料 ................................................................................................ 5
1-4-1.何謂介電材料 ................................................................................. 5
1-4-2 介電常數材料種類 ......................................................................... 7
1-5. 低介電常數材料 .................................................................................... 8
1-5-1 低介電常數材料種類 ..................................................................... 8
1-5-2 降低低介電常數方法 .................................................................. 10
1-6. 複合材料 .............................................................................................. 12
1-7. 研究動機 .............................................................................................. 14
第二章 文獻回顧 .................................................................................................. 16
2- 1Silicalite-1 研究與發展 ........................................................................... 16
2-1- 1Silicalite-1 合成 ............................................................................ 16
第三章 材料合成與鑑定 ...................................................................................... 39
3- 1 藥品及設備 ............................................................................................. 39
3- 2 Silicalite-1 沸石合成 .............................................................................. 40
3- 3 材料鑑定 ................................................................................................ 42
3-3- 1 Silicalite-1 之XRD ...................................................................... 42
3-3- 2 Silicalite-1 之FTIR ..................................................................... 43
3-3- 3 Silicalite-1 之BET 分析 .............................................................. 43
3-3- 4 Silicalite-1 之SEM ...................................................................... 44
3-3- 5 Silicalite-1 之TEM ...................................................................... 46
3-3- 6 高分子PI 之XRD ...................................................................... 47
3-3- 7 高分子PI 之FTIR ..................................................................... 47
3-3- 8 高分子PI 之SEM ...................................................................... 49
第四章 薄膜的製備與鑑定 .................................................................................. 50
4- 1 旋轉塗佈製程 ........................................................................................ 50
4- 2 氣霧沉積系統 ........................................................................................ 50
4- 3 介電常數之測量 .................................................................................... 51
4- 4 測試附著力(撕黏試驗及超音波震盪) ................................................. 52
4- 5 氣霧沉積系統之參數選擇 .................................................................... 53
4-5- 1 鍍液比例選擇 ............................................................................. 54
4-5- 2 高分子材料的選擇 ..................................................................... 58
4-5- 3 鍍膜時基板之溫度選擇 ............................................................. 59
4-5- 4 鍍膜時間之選擇 ......................................................................... 63
4- 6 薄膜鑑定 ................................................................................................ 68
第五章 薄膜性質 .................................................................................................. 71
5- 1 接觸角之比較 ........................................................................................ 71
5- 2 介電常數比較 ......................................................................................... 76
5- 3 熱穩定性比較 ........................................................................................ 80
5- 4 附著力比較 ............................................................................................ 80
第六章 結論 .......................................................................................................... 85
參考文獻 ................................................................................................................ 86
圖 1-1 四面體 .......................................................................................................... 1
圖 1-2SIO4 及ALO4 電荷示意圖............................................................................. 1
圖 1-3 構成沸石結構式之多面體結構 .................................................................. 2
圖 1-4 分子篩選擇性 .............................................................................................. 3
圖 1-5MFI 型沸石結構示意圖 ............................................................................... 3
圖 1-6SILICALITE-1 結構圖示 ................................................................................. 4
圖 1-7 沸石薄膜的應用 .......................................................................................... 5
圖 1-8 介電層各種不同名稱 .................................................................................. 6
圖 1-9 延遲時間與技術節點關係圖 ...................................................................... 6
圖 1-10IBM 公司積體電路導體連線及有效介電常數的演進過程圖 ................. 7
圖 1-11 低介電常數材料利用在IC 位置............................................................... 8
圖 1-12 PI 合成過程 .............................................................................................. 11
圖 2-1 SILICALITE-1 XRD 圖 ................................................................................. 16
圖 2-2 合成奈米級SILICALITE-1 沸石 ................................................................. 17
圖 2-3 不同薄膜之表面狀態[ ................................................................................ 18
圖 2-4 沸石膜未來的應用] ................................................................................... 19
圖 2-5 SILICALITE-1 沸石和成不同時間之XRD 圖 ............................................ 20
圖 2-6 不同天數SILICALITE-1 沸石去鍍膜表面及橫切面之SEM 圖(A、E 為
3DAY,B、F 為3.5DAY,C、G 為4DAY,D、H 為5DAY) .......................... 20
圖 2-7 FAUJASITE 與SILICALITE-1 沸石其單層及厚層之表面粗糙度 ............... 21
圖 2-8 不同沸石在不同FRAMEWORK DENSITY 下的K 值 .................................. 22
圖 2-9 不同沸石於2 GHZ 下之介電常數 ........................................................... 2
圖 2-10 不同合成路線所製備的PSZ LOW-K 薄膜之示意圖 ............................. 24
圖 2-11 不同製備方法的沸石膜其彈性係數與介電常數 .................................. 24
圖 2-12 不同型沸石膜其介電常數 ...................................................................... 25
圖 2-13 氟化物與沸石上矽烷基結合 .................................................................. 25
圖 2-14MFI 型沸十與添加氟化物之K 值變化 .................................................. 26
圖 2-15 MEL 型沸十與添加氟化物之K 值變化 ................................................. 26
圖 2-16 PTFE 薄膜厚度從48,94,204,800NM 之SEM 圖 ........................... 28
圖 2-17 PTFE 薄膜機械強度測試(A)彈性係數(B)硬度之圖 .............................. 28
圖 2-18 擊穿測式儀器 .......................................................................................... 29
圖 2-19 PI/F127 之FTIR 圖 .................................................................................. 30
圖 2-20 快速合成PI 之流程圖 ............................................................................ 31
圖 2-21 PI 中不同F127 含量其K 值 .................................................................... 31
圖 2-22 製備多孔性PI 之流程圖 ........................................................................ 32
圖 2-23 (A)PI 薄膜、(B)PI/10%TEOS、(C)PI/20%TEOS 之SEM 圖 ................ 33
圖 2-24 添加不同比例TEOS 之K 值 .................................................................. 33
圖 2-25 用SIO2 製備多孔性PI 薄膜之SEM 圖 ................................................. 33
圖 2-26 溴化環氧樹酯與介孔二氧化矽複合之SEM 圖 ................................... 34
圖 2-27 環氧樹酯與介孔二氧化矽之K 值變化 .................................................. 35
圖 2-28 環氧樹酯/二氧化矽凝膠複合薄膜之接觸角 ......................................... 35
圖 2-29MMA-POSS 添加比例不同之K 值變化 ................................................ 36
圖 2-30 (A)SILICALITE-1(B) SILICALITE-1/POLYMER 複合薄膜之SEM 圖 .......... 37
圖 2-31 沸石/PI 複合薄膜之SEM 圖 .................................................................. 38
圖 2-32 不同比例複合薄膜之K 值 ...................................................................... 38
圖 3-1SILICALITE-1 沸石懸浮液製備流程 ........................................................... 41
圖 3-2 SILICALITE-1 之XRD ................................................................................. 42
圖 3-3 使用文獻比對SILICALITE-1 沸石訊號 ..................................................... 42
圖 3-4 SILICALITE-1 煅燒前後之FTIR 圖 ............................................................ 43
圖 3-5 SILICALITE-1 煅燒前後之BET 圖 ............................................................. 44
圖 3-6 SILICALITE-1 在100K 倍下之SEM 圖 ...................................................... 45
圖 3-7 SILICALITE-1 之粒徑分佈圖 ...................................................................... 45
圖 3-8 SILICALITE-1 之TEM 圖 ............................................................................ 46
圖 3-9 文獻SILICALITE-1TEM 圖 ......................................................................... 46
圖 3-10 PI 之XRD 圖 ............................................................................................ 47
圖 3-11 PI 之FTIR 圖 ............................................................................................ 48
圖 3-12 文獻PI 與PI 之FTIR 圖 ......................................................................... 48
圖 3-13 PI 之SEM 圖 ............................................................................................ 49
圖 4-1 氣霧沉積系統之設計示意圖 .................................................................... 51
圖 4-2 平行板電容器示意圖 ................................................................................ 52
圖 4-3 PI 之平均介電常數 .................................................................................... 55
圖 4-4 ZEOPI-LS 之平均介電常數(SILICALITE-1:PI=1.05:1,W/W) .................. 55
圖 4-5 ZEOPI-LS 之平均介電常數(SILICALITE-1:PI=2.34:1,W/W) .................. 56
圖 4-6 ZEOPI-LS 之平均介電常數(SILICALITE-1:PI=3.26:1,W/W) .................. 56
圖 4-7 撕黏測試實驗 ............................................................................................ 57
圖 4-8 SILICALITE-1 之TGA-DTG 圖 ................................................................... 60
圖 4-9 PI 之TGA-DTG 圖 .................................................................................... 60
圖 4-10 ZEOPI-LS 複合薄膜之FTIR 圖 .............................................................. 61
圖 4-11 ZEOPI-LS 之TGA-DTG 圖 ..................................................................... 61
圖 4-12 LS-MFPI 複合薄膜在340℃之BET 圖 ................................................. 62
圖 4-13 不同鍍膜時間與膜厚之關係圖 .............................................................. 63
圖 4-14 鍍膜時間1 MIN 之SEM 圖 ..................................................................... 64
圖 4-15 鍍膜時間2 MIN 之SEM 圖 ..................................................................... 65
圖 4-16 鍍膜時間2 MIN 之SEM 圖 ..................................................................... 66
圖 4-17 不同鍍膜時間SEM 之CROSS-SECTION 圖 ............................................. 67
圖 4-18 (A)ZEOPI-LS 與(B)LS-MU 之SEM 橫切圖 ........................................ 67
圖 4-19 ZEOPI-LS 複合薄膜之XRD 圖 .............................................................. 69
圖 4-20 ZEOPI-LS 複合薄膜之SEM 圖 .............................................................. 69
圖 4-21 ZEOPI-LS 複合薄膜之TEM 圖 .............................................................. 70
圖 5-1 薄膜之接觸角比較 .................................................................................... 72
圖 5-2 薄膜之 OM 圖 ........................................................................................... 73
圖 5-3 (A) ZEO-SP (B)ZEOPI-SP 之OM 圖 ......................................................... 74
圖 5-4 SILICALITE-1 薄膜之AFM 圖 .................................................................... 75
圖 5-5 SILICALITE-1/PI 複合薄膜之AFM 圖 ....................................................... 75
圖 5-6 ZEO-SP 於不同頻率下之介電常數 .......................................................... 77
圖 5-7 ZEOPI-SP 於不同頻率下之介電常數 ...................................................... 77
圖 5-8 ZEO-LS 於不同頻率下之介電常數 .......................................................... 78
圖 5-9 ZEOPI-LS 於不同頻率下之介電常數 ...................................................... 78
圖 5-10 於不同時間下SPIN-COATING 薄膜之介電常數變化圖 .......................... 79
圖 5-11 於不同時間下LIQUID SPRAY 薄膜之介電常數變化圖 ........................... 79
圖 5-12 ZEO-LS 於不同溫度下之FT-IR 圖 ........................................................ 81
圖 5-13 ZEOPI-LS 於不同溫度下之FT-IR 圖 ..................................................... 81
圖 5-14 兩種SPIN COATING 薄膜附著力測試前後............................................... 82
圖 5-15 兩種LIQUID SPRAY 薄膜附著力測試前後 .............................................. 83
圖 5-16 兩種LIQUID SPRAY 薄膜附著力測試前後 .............................................. 84
表 1-1 不同配方條件合成MFI 型沸石 ................................................................. 4
表 1-2 金屬與介電層介電常數未來發展 .............................................................. 7
表 1-3 介電材料依介電常數高低依序排列 .......................................................... 7
表 1-4 低介電材料所要求的條件 .......................................................................... 8
表 1-5 低介電常數材料 .......................................................................................... 9
表 1-6 高分子在1MHZ 下的K 值 ........................................................................ 10
表 1-7 常見的分子鍵的極化率 ............................................................................ 11
表 1-8 基材之分類 ................................................................................................ 13
表 1-9 為奈米複合材料構成 ................................................................................ 14
表 2-1 合成奈米級MFI 型沸石不同條件 ............................................................ 17
表 2-2 不同沸石膜於不同頻率下算出的介電常數 ............................................ 22
表 2-3 不同純矽沸石在2GHZ 之K 值 ................................................................. 23
表 2-4 對不同年代金屬導線需要之介電常數 .................................................... 27
表 2-5 聚合物材料之K 值及熱分解溫度 ............................................................ 27
表 2-6 不同薄膜之K 值 ........................................................................................ 37
表 2-7 PI 與複合薄膜之強度比較 ........................................................................ 38
表 3-1 藥品及基板 ................................................................................................ 39
表 3-2 設備及儀器 ................................................................................................ 39
表 3-3 SILICALITE-1 煅燒前後之比表面積 .......................................................... 44
表 4-1 本實驗所製備薄膜之簡稱 ........................................................................ 50
表 4-2 不同鍍液比例之性質比較 ........................................................................ 57
表 4-3 測試高分子特性結果 ................................................................................ 58
表 4-4 SILICALITE-1 煅燒前後與ZEOPI-LS 複合材料之比表面積值 ............... 62
表 4-5 不同鍍膜時間之薄膜狀態 ........................................................................ 63
表 5-1 各種薄膜於1 MHZ 下之介電常數 ........................................................... 76

[1] Breck D.W., “Zeolite molecular sieves”, John Wiley &; Sons, Inc, 1974.
[2] 吳榮宗, “工業觸媒概論”, 國興出版社, 1989 年。
[3] Flanigen E.M.“Molecular Sieve zeolite Technology-The First
twenty-five-years.”Pure&; apply ,vol.52, pp.2191-2211, 1980 .
[4] “Database of zeolite structure,http://www.iza-structure.org/databases.
[5] 徐國財,張立德,“奈米複合材料”,五南圖書出版,2004 年。
[6] Lew C.M., Cai R., &; Yan Y., “Zeolite thin films: from computer chips to
space stations”, Accounts of chemical research, 43(2), 210-219, 2009.
[7] 陳光華,鄧金萍,“新型電子薄膜材料”,曉園出版社,2006 年。
[8] Liu R., Pai C.S., &; Martinez E., “Interconnect technology trend for
microelectronics”, Solid-State Electronics, 43(6), 1003-1009, 1999.
[9] Volksen W., Miller R.D., &; Dubois G., “Low dielectric constant materials”,
Chemical reviews, 110(1), 56-110, 2009.
[10] Maier G., “Low dielectric constant polymers for microelectronics”, Progress
in polymer science, 26(1), 3-65, 2001.
[11] Hunt H.K., Lew C.M., Sun M., Yan Y., &; Davis M.E., “Pure-silica zeolite
thin films by vapor phase transport of fluoride for low-k applications”,
Microporous and Mesoporous Materials, 128(1-3), 12-18, 2010.
[12] Zulkifli. A “Polymer dielectric materials”,In Tech Open, University Sains
Malaysia, Malaysia,2012.
[13] 劉柏村, 張鼎張, “低介電常數材料應用於導體連線製程技術的探討”,
奈米通訊, 第九卷, 第二期, 2002 年。
[14] 劉雪寧, 楊治中, “納米複合材料的設計與應用”, 化學通報, 62, 1999
年。
[15] Kalipcilar.H &;. Culfaz.A“Synthesis of Submicron Silicalite-1 Crystals
from Clear Solutions”Cryst. Res. Technol. ,vol 35, pp.933~942, 2000.
[16] Wang.Z, Mitra.A, &; Wang.H,, Huang.L, and Yan.Y, “Pure Silica Zeolite
Films as Low-k Dielectrics by Spin-On of Nanoparticle Suspensions”, Adv.
Mater. 2001, 13, No. 19, October 2.
[17] Subhash B,“Synthesis structure and acid characteristics of partially
crystalline silicalite-1 based materials”, Micro. and Meso. Materials,vol
123,pp.129-139,2009.
[18] Ting C.Y., “Spin-coated mesoporous silica films from a surfactant templated
method: Preparation and applications as low-K materials and antireflection
films”, 台灣大學化工研究所博士論文, 2004 年.
[19] Lew C.M., Cai R., &; Yan Y., “Zeolite thin films: from computer chips to
space stations”, Accounts of chemical research, 43(2), 210-219, 2009.
[20] Salvador.E,Christine.E.A,Steliana.A,Mikhail.R.B.,Francesca.I.Karen.M,&;
Johan.A.M,“Characterization of spin-on zeolite films prepared from
Silicalite-1 nanoparticle suspensions”, Microporous and Mesoporous
Materials,Vol 118,458-466, 2009.
[21] Salih.K.K.,Can.O. &; Burcu.A. “Fabrication of nano- to micron-sized
patterns using zeolites: Its application in BSA adsorption” Microporous and
Mesoporous Materials 191 (2014) 59–66.
[22] Sun M., Maichen W., Pophale R., Liu Y., Cai R., Lew C.M., &; Yan Y.,
“Dielectric constant measurement of zeolite powders by time-domain reflectometry”, Microporous and Mesoporous Materials, 123(1-3), 10-14,
2009.
[23] Hunt H.K., Lew C.M., Sun M., Yan Y., &; Davis M.E., “Pure-silica zeolite
thin films by vapor phase transport of fluoride for low-k applications”,
Microporous and Mesoporous Materials, 128(1-3), 12-18, 2010.
[24] Hunt. H.K., Lew C.M., Sun M., Yan, Y., &; Davis M.E., “Pure-silica LTA,
CHA, STT, ITW, and -SVR thin films and powders for low-k applications”,
Microporous and Mesoporous Materials, 130(1-3), 49-55, 2010.
[25] Yuan H., Xu J., &; Xie ., “Ultra low-dielectric-constant methylated
mesoporous silica films with high hydrophobicity and stability”, Materials
Chemistry and Physics, 129(3), 1195-1200, 2011.
[26] Christopher M. Lew, Zijian Li, Shuang Li, Hwang.S.J, Yan Liu, Dora I.,
Sun.M, Wang.J, Mark E. Davis, &; Yan.Y.“Pure-Silica-Zeolite MFI and
MEL Low-Dielectric ConstantFilms with Fluoroorganic Functionalization”
Adv. Funct. Mater. 18, 3454–3460 ,2008.
[27] Maier.G.“Low dielectric constant polymers for microelectronics” Prog.
Polym. Sci. 26 ,3-25,2001.
[28] 賈紅娟,黨智敏,“低介電常數聚醯亞胺薄膜的製備與研究探討”北京化
工博士論文,2011年。
[29] Jinguo W,U, Kima .H.K, Frank G.S, Bin Z, GNiehc.T “Thickness
dependence of morphology and mechanical propertiesof on-wafer low-k
PTFE dielectric films” Thin Solid Films,Pages 413–417,2000.
[30] 章程,邵濤,龍凱華,王鈺,張東東,嚴萍“重複頻率脈衝四氟乙烯薄膜擊穿
特性”2011 年。
[31] Yunxia. J, Jing. T. Jun. H, Xia. H, Yazhuo. S &; Honglai. L “One-step
fabrication of ultralow dielectric polyimide films consisting of
size-controlled mesoporous nanoparticles” Pages 178– 186,2011.
[32] Muhammad. O, Nicholas. M, Hazizan. A, &; Zulkifli .A “Dependence of the
Dielectric Constant on the FluorineContent and Porosity of Polyimides” Vol.
121, 3192–3200 ,2010.
[33] Qihua. W, Chao. W , &; Tingmei. W “Controllable low dielectric porous
polyimide films templated by silica microspheres: Microstructure, formation
mechanism, and properties” Journal of Colloid and Interface Science,
389(1):99-105 ,2013.
[34] Jingjing. L, &; Xiaodong. W. “Preparation, microstructure, and properties of
novel low-k brominated epoxy/mesoporous silica composites” European
Polymer Journal 44,1414–1427,2011.
[35] Dengteng. G , Lili. Y, Yao. L, &; JiuPeng. Z “Hydrophobic and thermal
insulation properties of silica aerogel/epoxy composite” Journal of
Non-Crystalline Solids 355 ,2610–2615,2009.
[36] Min-Chi. T, &; Ying-Ling. L“Preparation, morphology, and ultra-low
dielectric constants of benzoxazine-based polymers/polyhedral oligomeric
silsesquioxane (POSS) nanocomposites” Polymer 51,5567-5575,2010.
[37] Larlus.O,Mintovab.S, Valtchev.V, Jean.B,Metzger T.H, &;
Beinb.T,“Silicalite-1/polymer films with low-k dielectric constants” Applied
Surface Science 226,155–160,2004.
[38] 王杰,俞娟, 谷和平, 王曉東, 黄培“具有吸附特性3A 沸石/ PI 复合膜
的製備與性能”2011 年。
[39] Fujian. L, Caijin. L, Limin. R, Xiangju. M, Hao. Z, &; ,Feng-Shou .X
“High-temperature synthesis of stable and ordered mesoporous polymer
monoliths with low dielectric constants” Journal of Materials Chemistry,
7921-7928 ,2009.
[40] Qinghua. L, “Crystallization of Colloidal TPA-Silicalite-1 by a Two-Stage
Varying-Temperature Synthesis,” Licentiate Thesis, 1402-1575,2000。
[41] Richard. F, Tandra. G, Uros. C, Nikolay. P, &; Michael A. “Advances in
Ultra Low Dielectric Constant Ordered Porous Materials”The
Electrochemical Society Interface.2011.
[42] 謝慶東,卓昭伶“可溶性聚醯亞胺側鏈含桂皮酸酯基之合成及其性質分
析”南台科技大學,2010年。
[43] 3M (n.d.), “3M 610 測試膠帶”, Retrieved July 12, 2013, from
http://solutions.3m.com.tw/.
[44] Aylin A, Cigdem. A.O, Melkon. T, Tuncer E, &; Erdem.S “Post-synthesis
treatment for improving zeolite coating stability”. Microporous and
Mesoporous Materials 156,262–269,2012 .
[45] 陳英豪“ 奈米沸石複合薄膜之製備與特性研究” 義守大學
生物技術與化學工程碩士論文,2013 年。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top