李咨胤. (2011). 水稻T-DNA插入突變體M52048分析及其活化的三個基因OsMADS14, OsMADS34及OsCP7之功能研究. 中興大學分子生物學研究所碩士論文.黃建富. (2013). 異位表現OsMADS34及OsCP7基因導致水稻穗生長異常之探討. 中興大學分子生物學研究所碩士論文.羅舜芳. (2008). 利用T-DNA插入性突變株探討水稻中GA 2-oxidase, MADS14, MADS34和Flavonoid 3'-hydroxylase之功能. 中興大學分子生物學研究所博士論文, 166.
Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
Ahmed, S.U., Rojo, E., Kovaleva, V., Venkataraman, S., Dombrowski, J.E., Matsuoka, K., and Raikhel, N.V. (2000). The plant vacuolar sorting receptor AtELP is involved in transport of NH2-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. The Journal of cell biology 149, 1335-1344.
Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences of the United States of America 97, 5328-5333.
Bai, X., Wang, Q., and Chu, C. (2008). Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic research 17, 1035-1043.
Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., Hill, C., Kiddle, S., Kim, Y.S., Penfold, C.A., Jenkins, D., Zhang, C., Morris, K., Jenner, C., Jackson, S., Thomas, B., Tabrett, A., Legaie, R., Moore, J.D., Wild, D.L., Ott, S., Rand, D., Beynon, J., Denby, K., Mead, A., and Buchanan-Wollaston, V. (2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant cell 23, 873-894.
Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., and Pink, D. (2003). The molecular analysis of leaf senescence-a genomics approach. Plant biotechnology journal 1, 3-22.
Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., and Leaver, C.J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant journal 42, 567-585.
Canut, H., Dupre, M., Carrasco, A., and Boudet, A.M. (1987). Proteases of Melilotus alba mesophyll protoplasts. Planta 170, 541-549.
Chen, H.J., Huang, D.J., Hou, W.C., Liu, J.S., and Lin, Y.H. (2006). Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of plant physiology 163, 863-876.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G., and Jang, S.K. (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant molecular biology 40, 419-429.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G., and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant journal 61, 767-781.
De Bodt, S., Raes, J., Van de Peer, Y., and Theissen, G. (2003). And then there were many: MADS goes genomic. Trends in plant science 8, 475-483.
Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18, 926-936
Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725-734.
Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., and Kater, M.M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant physiology 135, 2207-2219.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO journal 18, 4679-4688.
Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant physiology 153, 728-740.
Gietl, C., and Schmid, M. (2001). Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Die Naturwissenschaften 88, 49-58.
Gu, Q., Ferrandiz, C., Yanofsky, M.F., and Martienssen, R. (1998). The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509-1517.
Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525-529.
Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant molecular biology 63, 351-364.
Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306.
International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Ito, T., Nagata, N., Yoshiba, Y., Ohme-Takagi, M., Ma, H., and Shinozaki, K. (2007). Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. The Plant cell 19, 3549-3562.
Izawa, T. (2007). Daylength measurements by rice plants in photoperiodic short-day flowering. International review of cytology 256, 191-222.
Jeon, J., Lee, S., Jung, K.H., Yang, W.S., Yi, G.H., Oh, B.G., and An, G. (2000). Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breed 6, 581-592.
Karrer, K.M., Peiffer, S.L., and DiTomas, M.E. (1993). Two distinct gene subfamilies within the family of cysteine protease genes. Proceedings of the National Academy of Sciences of the United States of America 90, 3063-3067.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of experimental botany 57, 3433-3444.
Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H., and Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant & cell physiology 51, 47-57.
Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. (2012). Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. The Plant cell 24, 1848-1859.
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., and Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant & cell physiology 43, 1096-1105.
Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774.
Krizek, B.A., and Meyerowitz, E.M. (1996). Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proceedings of the National Academy of Sciences of the United States of America 93, 4063-4070.
Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747.
Kumar, S. (2007). Caspase function in programmed cell death. Cell death and differentiation 14, 32-43.
Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant & cell physiology 41, 710-718.
Lee, S., An, G. (2007). Diversified mechanisms for regulating flowering time in a
short-day plant rice. J Plant Biol 50, 241-248
Lee, S., Jung, K.H., An, G., and Chung, Y.Y. (2004a). Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant molecular biology 54, 755-765.
Lee, S., Kim, J., Han, J.J., Han, M.J., and An, G. (2004b). Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. The Plant journal 38, 754-764.
Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., and Zhang, D.B. (2006). The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant cell 18, 2999-3014.
Liu, C., Thong, Z., and Yu, H. (2009). Coming into bloom: the specification of floral meristems. Development 136, 3379-3391.
Lohman, K.N., Gan, S., John, M.C., Amasino, R.M. (1994). Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92, 322-328
Mandel, M.A., and Yanofsky, M.F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377, 522-524.
Messenguy, F., and Dubois, E. (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316, 1-21.
Munster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H., and Theissen, G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences of the United States of America 94, 2415-2420.
Noh, Y.S., and Amasino, R.M. (1999). Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant molecular biology 41, 181-194.
Otegui, M.S., Noh, Y.S., Martinez, D.E., Vila Petroff, M.G., Staehelin, L.A., Amasino, R.M., and Guiamet, J.J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant journal : for cell and molecular biology 41, 831-844.
Park, S.J., Kim, S.L., Lee, S., Je, B.I., Piao, H.L., Park, S.H., Kim, C.M., Ryu, C.H., Xuan, Y.H., Colasanti, J., An, G., and Han, C.D. (2008). Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. The Plant journal 56, 1018-1029.
Parrott, D., Yang, L., Shama, L., and Fischer, A.M. (2005). Senescence is accelerated, and several proteases are induced by carbon "feast" conditions in barley (Hordeum vulgare L.) leaves. Planta 222, 989-1000.
Parrott, D.L., Martin, J.M., and Fischer, A.M. (2010). Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. The New phytologist 187, 313-331.
Paxson-Sowders, D.M., Owen, H.A., Makaroff, C.A. (1997). A comparative ultrastructural analysis of exine pattern development in WT Arabidopsis and a mutant defective in pattern formation. Protoplasma 198, 53-65
Pelucchi, N., Fornara, F., Favalli, C., Masiero, S., Lago, C., Pe`, M.E., Colombo, L., Kate,r M.M. (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sexual Plant Reproduction 15, 113-122.
Piffanelli, P., Ross, J.H.E., Murphy, D.J. (1998). Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11, 65-80
Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. BioEssays 26, 363-373.
Rawlings, N.D., Barrett, A.J., and Bateman, A. (2010). MEROPS: the peptidase database. Nucleic acids research 38, D227-233.
Richau, K.H., Kaschani, F., Verdoes, M., Pansuriya, T.C., Niessen, S., Stuber, K., Colby, T., Overkleeft, H.S., Bogyo, M., and Van der Hoorn, R.A. (2012). Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant physiology 158, 1583-1599.
Riechmann, J.L., and Meyerowitz, E.M. (1997a). Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Molecular biology of the cell 8, 1243-1259.
Riechmann, J.L., and Meyerowitz, E.M. (1997b). MADS domain proteins in plant development. Biological chemistry 378, 1079-1101.
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America 93, 4793-4798.
Schmitz, J., Franzen, R., Ngyuen, T.H., Garcia-Maroto, F., Pozzi, C., Salamini, F., and Rohde, W. (2000). Cloning, mapping and expression analysis of barley MADS-box genes. Plant molecular biology 42, 899-913.
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990). Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250, 931-936.
Senatore, A., Trobacher, C.P., and Greenwood, J.S. (2009). Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant physiology 149, 775-790.
Seok, H.Y., Park, H.Y., Park, J.I., Lee, Y.M., Lee, S.Y., An, G., and Moon, Y.H. (2010). Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochemical and biophysical research communications 401, 598-604.
Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S., and Murai, K. (2007). The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes & genetic systems 82, 167-170.
Shukla, P., Singh, N.K., Kumar, D., Vijayan, S., Ahmed, I., and Kirti, P.B. (2014). Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco. Functional & integrative genomics 14, 307-317.
Sims, A.H., Dunn-Coleman, N.S., Robson, G.D., and Oliver, S.G. (2004). Glutamic protease distribution is limited to filamentous fungi. FEMS microbiology letters 239, 95-101.
Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036.
Than, M.E., Helm, M., Simpson, D.J., Lottspeich, F., Huber, R., and Gietl, C. (2004). The 2.0 A crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm. Journal of molecular biology 336, 1103-1116.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of molecular evolution 43, 484-516.
Trobacher, C.P., Senatore, A., Holley, C., and Greenwood, J.S. (2013). Induction of a ricinosomal-protease and programmed cell death in tomato endosperm by gibberellic acid. Planta 237, 665-679.
Tsuji, A., Tsukamoto, K., Iwamoto, K., Ito, Y., and Yuasa, K. (2013). Enzymatic characterization of germination-specific cysteine protease-1 expressed transiently in cotyledons during the early phase of germination. Journal of biochemistry 153, 73-83.
Turk, V., Turk, B., and Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. The EMBO journal 20, 4629-4633.
van der Hoorn, R.A. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annual review of plant biology 59, 191-223.
van der Hoorn, R.A., Leeuwenburgh, M.A., Bogyo, M., Joosten, M.H., and Peck, S.C. (2004). Activity profiling of papain-like cysteine proteases in plants. Plant physiology 135, 1170-1178.
Vernet, T., Khouri, H.E., Laflamme, P., Tessier, D.C., Musil, R., Gour-Salin, B.J., Storer, A.C., and Thomas, D.Y. (1991). Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. The Journal of biological chemistry 266, 21451-21457.
Wang, J.D., Lo, S.F., Li, Y.S., Chen, P.J., Lin, S.Y., Ho, T.Y., Lin, J.H., Chen, L.J. (2013). Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice. Botanical Studies 54, 1-12.
Weaver, L.M., Gan, S., Quirino, B., and Amasino, R.M. (1998). A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant molecular biology 37, 455-469.
Yamaguchi, T., and Hirano, H.Y. (2006). Function and diversification of MADS-box genes in rice. TheScientificWorldJournal 6, 1923-1932.
Yang, C., Vizcay-Barrena, G., Conner, K., and Wilson, Z.A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. The Plant cell 19, 3530-3548.
Yang, Y., and Jack, T. (2004). Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant molecular biology 55, 45-59.
Yang, Y., Dong, C., Yu, J., Shi, L., Tong, C., Li, Z., Huang, J., Liu, S. (2014). Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis. Plant Cell Tiss Organ Cult 119, 383-397.
Yang, Y., Fanning, L., and Jack, T. (2003). The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. The Plant journal 33, 47-59.
Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., and Sasaki, T. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant cell 12, 2473-2484.
Yanovsky, M.J., and Kay, S.A. (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308-312.
Yoshida, H., and Nagato, Y. (2011). Flower development in rice. Journal of experimental botany 62, 4719-4730.
Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, Z., Li, F., and Lu, H. (2014). The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. The Plant cell 26, 2939-2961.
Zhang, X.M., Wang, Y., Lv, X.M., Li, H., Sun, P., Lu, H., and Li, F.L. (2009). NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development. Journal of experimental botany 60, 1569-1577.