跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳潁芩
研究生(外文):Ying-Chin Chen
論文名稱:水稻OsMADS14與OsCP7基因功能探討
論文名稱(外文):Functional analysis of rice OsMADS14 and OsCP7 genes
指導教授:陳良築
指導教授(外文):Liang-Jwu Chen
口試委員:鍾美珠王強生
口試委員(外文):Mei-Chu ChungChan-Sen Wang
口試日期:2015-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:分子生物學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:59
中文關鍵詞:早開花半胱胺酸蛋白酶種子黑斑
外文關鍵詞:MADS-boxcysteine protease
相關次數:
  • 被引用被引用:1
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
由Taiwan Rice Insertional Mutant (TRIM) library 中得到T-DNA插入突變株M52048,具有矮株、提早開花、節彎曲以及穗抽出不完全等多種外表型。T-DNA以順向的方式插入水稻第三號染色體中,同時也藉由T-DNA所攜帶的35S 增強子活化附近的三個基因OsMADS34、OsMADS14與OsCP7 (putative cysteine protease)。OsMADS34與OsMADS14屬於MADS-box基因家族,在水稻中主要參與花器形成與開花時間的調控,OsCP7屬於C1A cysteine protease家族的一員。本研究將探討OsMADS14與OsCP7在水稻中所具有的功能。
過去研究指出大量表現OsMADS14會造成水稻早開花,因此為了解開花調節基因的表現是否受OsMADS14影響,於是分析OsGI、OsMADS50、Ehd2、Hd1、Ehd1、Hd3a、RFT1、OsMADS14、OsMADS18等開花調節基因在突變株M52048與Ubi:OsMADS14、Ubi:OsMADS34、OsCP7:OsCP7轉殖株中的表現情形。實驗結果顯示OsMADS14上游的兩個開花激素基因Hd3a與RFT1在M52048與Ubi:OsMADS14中皆提早表現,而在異位表現OsMADS34與OsCP7之轉殖株中則否。證實Hd3a與RFT1亦受到OsMADS14的表現而活化,然而其調控機制仍需要進一步的研究。
以玉米ubiquitin或花椰菜嵌紋病毒CaMV 35S啟動子大量表現OsCP7,皆無法得到穩定的轉殖株;而以OsCP7上游1.6 kb的原生性啟動子,成功得到OsCP7:OsCP7轉殖株,其性狀為略矮、略晚抽穗、穎花黑斑、稔實率低等。相對於在TNG67的水稻穗中無法偵測到OsCP7表現,OsCP7:OsCP7的葉片與水稻穗在RNA以及蛋白質層次皆可發現OsCP7被大量表現,顯示這些外表性狀確實與OsCP7有關聯。經由質體救援得知OsCP7:OsCP7其一株系的T-DNA插入位,因此得以藉由基因型分析區別轉殖株為同質或異質品系。雖然同質品系的外表性狀較為嚴重,但其RNA與蛋白表現量卻無法與異質品系辨別出差異。而異位表現之OsCP7蛋白主要表現在水稻穗中,因此為了探討大量表現OsCP7基因所造成的穎花黑斑與低稔實率,於是觀察OsCP7:OsCP7的花器組織結構,與TNG67相比並沒有明顯的差異,而經由花粉活性分析證實了異位性表現OsCP7影響花粉的發育。偵測OsCP7於水稻穗的表現情形,發現穎花黑斑與OsCP7的表現量呈現正相關,而且黑斑的產生可能是緣於mature OsCP7蛋白提升促使水稻進行計畫性細胞凋亡所導致的結果。
The T-DNA mutant M52048 identified from Taiwan Rice Insertional Mutant (TRIM) library showed dwarf, early flowering, node bending and impaired in panicle exertion. Three flanking genes, OsMADS34, OsMADS14 and OsCP7 (putative cysteine protease 7) were activated in this mutant. Both OsMADS34 and OsMADS14 belong to MADS-box gene family that may participate in regulation of flowering time and the identity of floral organ. OsCP7 is a member of C1A cysteine proteases. In this study, the function of OsMADS14 and OsCP7 were further investigated.
Previous study has demonstrated that over-expression of OsMADS14 could cause early flowering. To understand whether or not any other flowering regulatory genes were affected by the expression of OsMADS14. The flowering regulatory genes including OsGI, OsMADS50, Ehd2, Hd1, Ehd1, Hd3a, RFT1, OsMADS14 and OsMADS18 were investigated in mutant M52048 and Ubi:OsMADS14, Ubi:OsMADS34 and OsCP7:OsCP7 transgenic rice respectively. Results showed two florigen genes, Hd3a and RFT1, expressed much earlier in M52048 and Ubi:OsMADS14 but not in Ubi:OsMADS34 and OsCP7:OsCP7, suggesting that Hd3a and RFT1 were regulated by the expression of OsMADS14. The mechanism how the expression of OsMADS14 could regulate florigen genes requires further investigation.
Expression of OsCP7 driven by the maize ubiquitin promoter or the CaMV 35S promoter in transgenic rice cannot be obtained successfully. However transgenic rice, OsCP7:OsCP7 using 1.6 kb of OsCP7 promoter could be easily obtained and OsCP7:OsCP7 transgenic rice plants revealed slightly shorter in plant height, delayed flowering, lower fertility and lesion-like spots on spikelet. In contrast to the wild-type where no OsCP7 was detected in panicles, the RNA and protein expressions of OsCP7 in OsCP7:OsCP7 transgenic rice were detected in leaves at all development stages and panicles, and their expressions in transgenic rice correlated to the observed phenotypes. In addition, the phenotypes of segregated homozygous plants showed more significant than those of heterozygous plants within the same transgenic line, suggesting the dosage effect of transgene. However the expression levels of RNA and protein cannot be differentiated between homo- and hetero-zygous lines. To unravel the causes that lead to lower fertility of OsCP7:OsCP7, the floral organ and pollen viability were investigated. The floral organ showed no obvious differences between wild-type and OsCP7:OsCP7, but the pollen viability of OsCP7:OsCP7 was lower than that of wild-type, indicating that continuing expression of OsCP7 influence pollen development. Further investigation also indicated that the lesion-like spots on spikelet was correlated with the expression levels of OsCP7 and the lesions could possibly due to the programmed cell death caused by the activity of increased mature OsCP7 present in spikelet.
中文摘要 i
英文摘要 ii
目錄 iv
圖表目次 vi
縮寫對照表 vii
前言 1
前人研究 2
一、水稻基因功能之探討 2
二、突變株M52048 2
三、MADS-box基因家族 3
四、花器形成之ABCDE模式與A群基因的功能 3
五、開花時間調控機制 4
六、OsMADS14對於開花時間之影響 6
七、Cysteine protease 6
八、Papain-like cysteine proteases 6
九、PLCP參與計畫性細胞凋亡 8
十、OsCP7可能參與計畫性細胞凋亡 9
材料與方法 11
一、儀器與設備 11
二、實驗藥品 11
三、研究材料 11
四、水稻轉殖基因分析 11
五、T-DNA插入點之生物資訊分析 14
六、水稻花粉活性分析 14
結果 15
壹、OsMADS14促進早開花可能的分子機制探討 15
一、開花調控基因於Ubi:OsMADS14轉殖株於各時期表現分析 15
二、開花調控基因於突變株M52048於各時期表現分析 16
三、開花調控基因於Ubi:OsMADS34與OsCP7:OsCP7轉殖株於各時期表現分析 16
貳、OsCP7基因研究 16
一、OsCP7轉殖株外表性狀分析 16
二、OsCP7:OsCP7-5轉殖株基因型分析 17
三、OsCP7基因於不同轉殖株之表現量分析 17
四、OsCP7基因於OsCP7:OsCP7-5轉殖株不同基因型之表現量分析 17
五、OsCP7基因於TNG67與OsCP7:OsCP7-5同質品系轉殖株在不同時期與不同部位之表現量分析 18
六、OsCP7基因於OsCP7:OsCP7-5同質品系穎花中之表現量分析 18
七、穎花黑斑嚴重程度不同之OsCP7:OsCP7-5同質品系表現量分析 18
八、水稻花器觀察與花粉活性分析 19
九、35S:OsCP7-6x His tag mutant之表現量分析與農藝性狀調查 19
十、35S:OsCP7 RNAi之農藝性狀調查 20
討論 21
一、OsMADS14為促進水稻開花的正向調控子 21
二、開花激素RFT1與Hd3a的表現可能受MADS-box蛋白複合物調控 21
三、OsMADS34可能也參與開花時間調控機制 22
四、OsCP7可能參與計畫性細胞凋亡,促使水稻產生黑斑以及低稔實率,甚至導致死亡 22
五、OsCP7可能參與老化機制 23
結論 25
參考文獻 26
表 35
圖 38
附表 51
附圖 53
李咨胤. (2011). 水稻T-DNA插入突變體M52048分析及其活化的三個基因OsMADS14, OsMADS34及OsCP7之功能研究. 中興大學分子生物學研究所碩士論文.
黃建富. (2013). 異位表現OsMADS34及OsCP7基因導致水稻穗生長異常之探討. 中興大學分子生物學研究所碩士論文.
羅舜芳. (2008). 利用T-DNA插入性突變株探討水稻中GA 2-oxidase, MADS14, MADS34和Flavonoid 3'-hydroxylase之功能. 中興大學分子生物學研究所博士論文, 166.
Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052-1056.
Ahmed, S.U., Rojo, E., Kovaleva, V., Venkataraman, S., Dombrowski, J.E., Matsuoka, K., and Raikhel, N.V. (2000). The plant vacuolar sorting receptor AtELP is involved in transport of NH2-terminal propeptide-containing vacuolar proteins in Arabidopsis thaliana. The Journal of cell biology 149, 1335-1344.
Alvarez-Buylla, E.R., Pelaz, S., Liljegren, S.J., Gold, S.E., Burgeff, C., Ditta, G.S., Ribas de Pouplana, L., Martinez-Castilla, L., and Yanofsky, M.F. (2000). An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proceedings of the National Academy of Sciences of the United States of America 97, 5328-5333.
Bai, X., Wang, Q., and Chu, C. (2008). Excision of a selective marker in transgenic rice using a novel Cre/loxP system controlled by a floral specific promoter. Transgenic research 17, 1035-1043.
Breeze, E., Harrison, E., McHattie, S., Hughes, L., Hickman, R., Hill, C., Kiddle, S., Kim, Y.S., Penfold, C.A., Jenkins, D., Zhang, C., Morris, K., Jenner, C., Jackson, S., Thomas, B., Tabrett, A., Legaie, R., Moore, J.D., Wild, D.L., Ott, S., Rand, D., Beynon, J., Denby, K., Mead, A., and Buchanan-Wollaston, V. (2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. The Plant cell 23, 873-894.
Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., and Pink, D. (2003). The molecular analysis of leaf senescence-a genomics approach. Plant biotechnology journal 1, 3-22.
Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., and Leaver, C.J. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. The Plant journal 42, 567-585.
Canut, H., Dupre, M., Carrasco, A., and Boudet, A.M. (1987). Proteases of Melilotus alba mesophyll protoplasts. Planta 170, 541-549.
Chen, H.J., Huang, D.J., Hou, W.C., Liu, J.S., and Lin, Y.H. (2006). Molecular cloning and characterization of a granulin-containing cysteine protease SPCP3 from sweet potato (Ipomoea batatas) senescent leaves. Journal of plant physiology 163, 863-876.
Cho, S., Jang, S., Chae, S., Chung, K.M., Moon, Y.H., An, G., and Jang, S.K. (1999). Analysis of the C-terminal region of Arabidopsis thaliana APETALA1 as a transcription activation domain. Plant molecular biology 40, 419-429.
Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., and Coupland, G. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
Cui, R., Han, J., Zhao, S., Su, K., Wu, F., Du, X., Xu, Q., Chong, K., Theissen, G., and Meng, Z. (2010). Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa). The Plant journal 61, 767-781.
De Bodt, S., Raes, J., Van de Peer, Y., and Theissen, G. (2003). And then there were many: MADS goes genomic. Trends in plant science 8, 475-483.
Doi, K., Izawa, T., Fuse, T., Yamanouchi, U., Kubo, T., Shimatani, Z., Yano, M., Yoshimura, A. (2004). Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18, 926-936
Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. (2000). Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127, 725-734.
Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., and Kater, M.M. (2004). Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant physiology 135, 2207-2219.
Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. The EMBO journal 18, 4679-4688.
Gao, X., Liang, W., Yin, C., Ji, S., Wang, H., Su, X., Guo, C., Kong, H., Xue, H., and Zhang, D. (2010). The SEPALLATA-like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant physiology 153, 728-740.
Gietl, C., and Schmid, M. (2001). Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Die Naturwissenschaften 88, 49-58.
Gu, Q., Ferrandiz, C., Yanofsky, M.F., and Martienssen, R. (1998). The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125, 1509-1517.
Hayama, R., Yokoi, S., Tamaki, S., Yano, M., and Shimamoto, K. (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422, 719-722.
Honma, T., and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409, 525-529.
Hsing, Y.I., Chern, C.G., Fan, M.J., Lu, P.C., Chen, K.T., Lo, S.F., Sun, P.K., Ho, S.L., Lee, K.W., Wang, Y.C., Huang, W.L., Ko, S.S., Chen, S., Chen, J.L., Chung, C.I., Lin, Y.C., Hour, A.L., Wang, Y.W., Chang, Y.C., Tsai, M.W., Lin, Y.S., Chen, Y.C., Yen, H.M., Li, C.P., Wey, C.K., Tseng, C.S., Lai, M.H., Huang, S.C., Chen, L.J., and Yu, S.M. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant molecular biology 63, 351-364.
Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R., and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302-306.
International Rice Genome Sequencing Project. (2005). The map-based sequence of the rice genome. Nature 436, 793-800.
Ito, T., Nagata, N., Yoshiba, Y., Ohme-Takagi, M., Ma, H., and Shinozaki, K. (2007). Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. The Plant cell 19, 3549-3562.
Izawa, T. (2007). Daylength measurements by rice plants in photoperiodic short-day flowering. International review of cytology 256, 191-222.
Jeon, J., Lee, S., Jung, K.H., Yang, W.S., Yi, G.H., Oh, B.G., and An, G. (2000). Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breed 6, 581-592.
Karrer, K.M., Peiffer, S.L., and DiTomas, M.E. (1993). Two distinct gene subfamilies within the family of cysteine protease genes. Proceedings of the National Academy of Sciences of the United States of America 90, 3063-3067.
Kater, M.M., Dreni, L., and Colombo, L. (2006). Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. Journal of experimental botany 57, 3433-3444.
Kobayashi, K., Maekawa, M., Miyao, A., Hirochika, H., and Kyozuka, J. (2010). PANICLE PHYTOMER2 (PAP2), encoding a SEPALLATA subfamily MADS-box protein, positively controls spikelet meristem identity in rice. Plant & cell physiology 51, 47-57.
Kobayashi, K., Yasuno, N., Sato, Y., Yoda, M., Yamazaki, R., Kimizu, M., Yoshida, H., Nagamura, Y., and Kyozuka, J. (2012). Inflorescence meristem identity in rice is specified by overlapping functions of three AP1/FUL-like MADS box genes and PAP2, a SEPALLATA MADS box gene. The Plant cell 24, 1848-1859.
Kojima, S., Takahashi, Y., Kobayashi, Y., Monna, L., Sasaki, T., Araki, T., and Yano, M. (2002). Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant & cell physiology 43, 1096-1105.
Komiya, R., Yokoi, S., and Shimamoto, K. (2009). A gene network for long-day flowering activates RFT1 encoding a mobile flowering signal in rice. Development 136, 3443-3450.
Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., and Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135, 767-774.
Krizek, B.A., and Meyerowitz, E.M. (1996). Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins. Proceedings of the National Academy of Sciences of the United States of America 93, 4063-4070.
Kruger, J., Thomas, C.M., Golstein, C., Dixon, M.S., Smoker, M., Tang, S., Mulder, L., and Jones, J.D. (2002). A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296, 744-747.
Kumar, S. (2007). Caspase function in programmed cell death. Cell death and differentiation 14, 32-43.
Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. (2000). Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant & cell physiology 41, 710-718.
Lee, S., An, G. (2007). Diversified mechanisms for regulating flowering time in a
short-day plant rice. J Plant Biol 50, 241-248
Lee, S., Jung, K.H., An, G., and Chung, Y.Y. (2004a). Isolation and characterization of a rice cysteine protease gene, OsCP1, using T-DNA gene-trap system. Plant molecular biology 54, 755-765.
Lee, S., Kim, J., Han, J.J., Han, M.J., and An, G. (2004b). Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. The Plant journal 38, 754-764.
Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., and Zhang, D.B. (2006). The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. The Plant cell 18, 2999-3014.
Liu, C., Thong, Z., and Yu, H. (2009). Coming into bloom: the specification of floral meristems. Development 136, 3379-3391.
Lohman, K.N., Gan, S., John, M.C., Amasino, R.M. (1994). Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol Plant 92, 322-328
Mandel, M.A., and Yanofsky, M.F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377, 522-524.
Messenguy, F., and Dubois, E. (2003). Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene 316, 1-21.
Munster, T., Pahnke, J., Di Rosa, A., Kim, J.T., Martin, W., Saedler, H., and Theissen, G. (1997). Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proceedings of the National Academy of Sciences of the United States of America 94, 2415-2420.
Noh, Y.S., and Amasino, R.M. (1999). Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant molecular biology 41, 181-194.
Otegui, M.S., Noh, Y.S., Martinez, D.E., Vila Petroff, M.G., Staehelin, L.A., Amasino, R.M., and Guiamet, J.J. (2005). Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean. The Plant journal : for cell and molecular biology 41, 831-844.
Park, S.J., Kim, S.L., Lee, S., Je, B.I., Piao, H.L., Park, S.H., Kim, C.M., Ryu, C.H., Xuan, Y.H., Colasanti, J., An, G., and Han, C.D. (2008). Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod. The Plant journal 56, 1018-1029.
Parrott, D., Yang, L., Shama, L., and Fischer, A.M. (2005). Senescence is accelerated, and several proteases are induced by carbon "feast" conditions in barley (Hordeum vulgare L.) leaves. Planta 222, 989-1000.
Parrott, D.L., Martin, J.M., and Fischer, A.M. (2010). Analysis of barley (Hordeum vulgare) leaf senescence and protease gene expression: a family C1A cysteine protease is specifically induced under conditions characterized by high carbohydrate, but low to moderate nitrogen levels. The New phytologist 187, 313-331.
Paxson-Sowders, D.M., Owen, H.A., Makaroff, C.A. (1997). A comparative ultrastructural analysis of exine pattern development in WT Arabidopsis and a mutant defective in pattern formation. Protoplasma 198, 53-65
Pelucchi, N., Fornara, F., Favalli, C., Masiero, S., Lago, C., Pe`, M.E., Colombo, L., Kate,r M.M. (2002). Comparative analysis of rice MADS-box genes expressed during flower development. Sexual Plant Reproduction 15, 113-122.
Piffanelli, P., Ross, J.H.E., Murphy, D.J. (1998). Biogenesis and function of the lipidic structures of pollen grains. Sex Plant Reprod 11, 65-80
Putterill, J., Laurie, R., and Macknight, R. (2004). It's time to flower: the genetic control of flowering time. BioEssays 26, 363-373.
Rawlings, N.D., Barrett, A.J., and Bateman, A. (2010). MEROPS: the peptidase database. Nucleic acids research 38, D227-233.
Richau, K.H., Kaschani, F., Verdoes, M., Pansuriya, T.C., Niessen, S., Stuber, K., Colby, T., Overkleeft, H.S., Bogyo, M., and Van der Hoorn, R.A. (2012). Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant physiology 158, 1583-1599.
Riechmann, J.L., and Meyerowitz, E.M. (1997a). Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity. Molecular biology of the cell 8, 1243-1259.
Riechmann, J.L., and Meyerowitz, E.M. (1997b). MADS domain proteins in plant development. Biological chemistry 378, 1079-1101.
Riechmann, J.L., Krizek, B.A., and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America 93, 4793-4798.
Schmitz, J., Franzen, R., Ngyuen, T.H., Garcia-Maroto, F., Pozzi, C., Salamini, F., and Rohde, W. (2000). Cloning, mapping and expression analysis of barley MADS-box genes. Plant molecular biology 42, 899-913.
Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H., and Sommer, H. (1990). Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science 250, 931-936.
Senatore, A., Trobacher, C.P., and Greenwood, J.S. (2009). Ricinosomes predict programmed cell death leading to anther dehiscence in tomato. Plant physiology 149, 775-790.
Seok, H.Y., Park, H.Y., Park, J.I., Lee, Y.M., Lee, S.Y., An, G., and Moon, Y.H. (2010). Rice ternary MADS protein complexes containing class B MADS heterodimer. Biochemical and biophysical research communications 401, 598-604.
Shitsukawa, N., Ikari, C., Shimada, S., Kitagawa, S., Sakamoto, K., Saito, H., Ryuto, H., Fukunishi, N., Abe, T., Takumi, S., Nasuda, S., and Murai, K. (2007). The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes & genetic systems 82, 167-170.
Shukla, P., Singh, N.K., Kumar, D., Vijayan, S., Ahmed, I., and Kirti, P.B. (2014). Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco. Functional & integrative genomics 14, 307-317.
Sims, A.H., Dunn-Coleman, N.S., Robson, G.D., and Oliver, S.G. (2004). Glutamic protease distribution is limited to filamentous fungi. FEMS microbiology letters 239, 95-101.
Tamaki, S., Matsuo, S., Wong, H.L., Yokoi, S., and Shimamoto, K. (2007). Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036.
Than, M.E., Helm, M., Simpson, D.J., Lottspeich, F., Huber, R., and Gietl, C. (2004). The 2.0 A crystal structure and substrate specificity of the KDEL-tailed cysteine endopeptidase functioning in programmed cell death of Ricinus communis endosperm. Journal of molecular biology 336, 1103-1116.
Theissen, G., Kim, J.T., and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of molecular evolution 43, 484-516.
Trobacher, C.P., Senatore, A., Holley, C., and Greenwood, J.S. (2013). Induction of a ricinosomal-protease and programmed cell death in tomato endosperm by gibberellic acid. Planta 237, 665-679.
Tsuji, A., Tsukamoto, K., Iwamoto, K., Ito, Y., and Yuasa, K. (2013). Enzymatic characterization of germination-specific cysteine protease-1 expressed transiently in cotyledons during the early phase of germination. Journal of biochemistry 153, 73-83.
Turk, V., Turk, B., and Turk, D. (2001). Lysosomal cysteine proteases: facts and opportunities. The EMBO journal 20, 4629-4633.
van der Hoorn, R.A. (2008). Plant proteases: from phenotypes to molecular mechanisms. Annual review of plant biology 59, 191-223.
van der Hoorn, R.A., Leeuwenburgh, M.A., Bogyo, M., Joosten, M.H., and Peck, S.C. (2004). Activity profiling of papain-like cysteine proteases in plants. Plant physiology 135, 1170-1178.
Vernet, T., Khouri, H.E., Laflamme, P., Tessier, D.C., Musil, R., Gour-Salin, B.J., Storer, A.C., and Thomas, D.Y. (1991). Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing. The Journal of biological chemistry 266, 21451-21457.
Wang, J.D., Lo, S.F., Li, Y.S., Chen, P.J., Lin, S.Y., Ho, T.Y., Lin, J.H., Chen, L.J. (2013). Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice. Botanical Studies 54, 1-12.
Weaver, L.M., Gan, S., Quirino, B., and Amasino, R.M. (1998). A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treatment. Plant molecular biology 37, 455-469.
Yamaguchi, T., and Hirano, H.Y. (2006). Function and diversification of MADS-box genes in rice. TheScientificWorldJournal 6, 1923-1932.
Yang, C., Vizcay-Barrena, G., Conner, K., and Wilson, Z.A. (2007). MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. The Plant cell 19, 3530-3548.
Yang, Y., and Jack, T. (2004). Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant molecular biology 55, 45-59.
Yang, Y., Dong, C., Yu, J., Shi, L., Tong, C., Li, Z., Huang, J., Liu, S. (2014). Cysteine Protease 51 (CP51), an anther-specific cysteine protease gene, is essential for pollen exine formation in Arabidopsis. Plant Cell Tiss Organ Cult 119, 383-397.
Yang, Y., Fanning, L., and Jack, T. (2003). The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. The Plant journal 33, 47-59.
Yano, M., Katayose, Y., Ashikari, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., Nagamura, Y., and Sasaki, T. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. The Plant cell 12, 2473-2484.
Yanovsky, M.J., and Kay, S.A. (2002). Molecular basis of seasonal time measurement in Arabidopsis. Nature 419, 308-312.
Yoshida, H., and Nagato, Y. (2011). Flower development in rice. Journal of experimental botany 62, 4719-4730.
Zhang, D., Liu, D., Lv, X., Wang, Y., Xun, Z., Liu, Z., Li, F., and Lu, H. (2014). The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. The Plant cell 26, 2939-2961.
Zhang, X.M., Wang, Y., Lv, X.M., Li, H., Sun, P., Lu, H., and Li, F.L. (2009). NtCP56, a new cysteine protease in Nicotiana tabacum L., involved in pollen grain development. Journal of experimental botany 60, 1569-1577.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top