跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/10 02:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳佑維
研究生(外文):Yu-Wei Chen
論文名稱:整合奈米碳球微型熱電發電器之研製
論文名稱(外文):Fabrication of Thermoelectric Micro Generators with Carbon Nanocapsules
指導教授:戴慶良
口試委員:許正治吳乾埼莊婉君
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:熱電偶微型熱電發電器CMOS-MEMS奈米碳球
外文關鍵詞:thermocouplethermoelectric microgeneratorCMOS-MEMScarbon nanocapsules
相關次數:
  • 被引用被引用:1
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用標準0.18μm 1P6M CMOS製程製作微型熱電發電器,微型熱電發電器由129組熱電偶串聯構成,其中熱電偶為利用半導體製程中的多晶矽,分別摻雜硼離子與磷離子,形成p-type與n-type的多晶矽所組成。微型熱電發電器由塞貝克效應(Seebeck effect)原理可以得知,其輸出電壓取決於熱電偶數目、塞貝克係數差與溫度差。塞貝克係數差於標準製程中因摻雜濃度已固定,為了達到更高的效能,設計方向將為提高結構上的溫度差,因此於熱電偶熱端上方堆疊高熱傳導係數的金屬鋁板,增加上方熱源傳遞到熱電偶的速率,並披覆上奈米碳球,吸收外界的輻射熱源,並利用RIE (Reactive-Ion Etching)將熱電偶熱端下方的矽基材掏空,以低熱傳導率的空氣將熱能保留於空腔,防止熱能迅速從下方的矽基材散失;熱電偶冷端上方則包覆低熱傳導係數的二氧化矽層,降低上方熱能傳遞到熱電偶的速率,使熱電偶冷熱端形成溫度差。利用ANSYS Workbench有限元素軟體,模擬各種熱電偶尺寸所構成的多個微型熱電發電器,其在接受固定熱源時,熱電偶的尺寸對於冷熱端溫度差的影響,同時計算熱電偶的內電阻,得到單位面積下最佳輸出功率的尺寸,並探討微型熱電發電器在接受不同的環境熱能時,其結構內部的溫度分佈與溫度梯度變化。實驗量測結果顯示,於620 K的熱源溫度下,未披覆奈米碳球的微型熱電發電器,產生的輸出電壓與輸出功率分別為4.426 mV與224.6 pW;而披覆奈米碳球薄膜後的微型熱電發電器,其輸出電壓與輸出功率分別提升至5.845 mV和391.7 pW。微型熱電發電器的電壓因子和功率因子分別為0.882 mV/K/mm2和13.686 pW/K2/mm2。
In this study, we present a thermoelectric microgenerator fabricated using the standard 0.18 μm CMOS (complementary metal oxide semiconductor) process are investigated. The thermoelectric microgenerator consists of 129 thermocouples in series, and the thermocouples are composed of p-type and n-type polysilicons. The output power of microgenerator relies on the temperature difference between the hot and cold parts of thermocouples. To increase the temperature difference of thermocouples, the hot part of thermocouples is designed as the suspended structure. Then, the hot part of the thermocouples is coated by CNCs (Carbon nanocapsules) that increasing absorb radiant heat source. The cold part of thermocouples is formed on the silicon substrate, and covered by silicon oxide that provides low thermal conductivity and thermal isolation. The FEM (finite element method) software of ANSYS Workbench is employed to simulate the temperature distribution and temperature difference of the thermoelectric microgenerator, and analyzed the optimal geometry of the thermocouples. The experimental results showed that the output voltage and output power of the microgenerator without CNCs film were 4.426 mV, and 224.65 pW, respectively, at the temperature difference of 3.6 K. The output voltage and output power of the microgenerator with CNCs film were 5.845 mV and 391.789 pW, respectively, at the temperature difference of 4.3 K. The microgenerator had the voltage factor of 0.882 mV/k/mm2 and the power factor of 13.686 pW/K2/mm2.
第一章 緒論﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 1
1.1 前言﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 1
1.2 文獻回顧﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 2
1.3 研究動機﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 5
第二章 微型熱電發電器的設計﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6
2.1 熱電效應﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 6
2.2 微型熱電發電器的原理﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 7
2.3 微型熱電發電器的的結構設計﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍ 9
2.4 微型熱電發電器的性能分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍11
2.5 微型熱電發電器的熱傳模擬分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍13
2.6 溫度計的性能分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍19
第三章 吸熱薄膜的製作﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍20
3.1 奈米碳球的簡介﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍20
3.2 奈米碳球薄膜的製作﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍23
3.3 奈米碳球的檢測﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍25
3.4 奈米碳球的吸熱性能分析﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍27
第四章 整合型微型熱電發電器的製作﹍﹍﹍﹍﹍﹍﹍﹍﹍32
4.1 微型熱電發電器的佈局﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍32
4.2 整合型熱電發電器的製作和後處理﹍﹍﹍﹍﹍﹍﹍﹍﹍33
4.3 結果與討論﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍35
第五章 量測結果與討論﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍40
5.1 量測架構與流程﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍40
5.2 微型熱電發電器的性能測試﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍42
5.3 微型熱電發電器性能比較﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍50
第六章 結論與未來展望﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51
6.1 結論﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍51
6.2 未來展望﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍52
附錄A 接觸式微型熱電發電器﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍53
A.1 研究動機﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍53
A.2 接觸式微型熱電發電器的設計﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍53
A.3 接觸式微型熱電發電器的性能分析﹍﹍﹍﹍﹍﹍﹍﹍﹍54
A.4 接觸式微型熱電發電器的熱傳模擬﹍﹍﹍﹍﹍﹍﹍﹍﹍56
A.5 接觸式微型熱電發電器的製作﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍58
A.6 接觸式微型熱電發電器的量測﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍62
附錄B 模擬與計算微型熱電發電器之熱電偶尺寸﹍﹍﹍﹍﹍67
附錄C 模擬與計算接觸式微型熱電發電器之熱電偶尺寸﹍﹍70
參考文獻 ﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍﹍73
[1]Energy in Sweden 2010, Facts and figures Table 46 Total world energy supply, 1990–2009, Table 53 Global supply of renewable energy, 1990–2008 (TWh)
[2]INDIEGOGO。2017。PowerWatch。網址: https://www.indiegogo.com/projects/smartwatch-powered-by-you-matrix-powerwatch-watch-fitness#/。上網日期:2017-08-01。
[3]YankoDesign。2013。Heat-electricity Conversion Storage Device 。網址:http://www.yankodesign.com/2013/02/12/power-surge-benefits/。上網日期:2017-08-01。
[4]漢力能源科技股份有限公司。2017。餘熱、廢熱回收ORC發電機。網址:https://www.asmag.com.tw/suppliers/productcontent.aspx?co=hanpower&id=838。上網日期:2017-08-01。
[5]Z. Wang, V. Leonov, P. Fiorini and C. V. Hoof, “Micromachined thermopiles for energy scavenging on human body,” TRANSDUCERS and EUROSENSORS '07 - 4th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 911-914, 2007.
[6]T. Huesgen, P. Woias and N. Kockmann, “Design and fabrication of MEMS thermoelectric generators with high temperature efficiency,” Sensors and Actuators A: Physical, Vol. 145-146, pp. 423-429, 2008.
[7]Z. Wang, V. Leonov, P. Fiorini and C. V. Hoof, “Realization of a wearable miniaturized thermoelectric generator for human body applications,” Sensors and Actuators A: Physical, Vol. 156, pp. 95-102, 2009.
[8]C. Lee and J. Xie, “Development of vacuum packaged CMOS thermoelectric energy harvester,” 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2009, pp. 803-807, 2009.
[9]J. Xie, C. Lee and H. Feng, “Design, fabrication, and characterization of CMOS MEMS-Based thermoelectric power generators,” Journal of Microelectromechanical Systems, Vol. 19, pp. 317-324, 2010.
[10]J. Su, V. Leonov, M. Goedbloed, Y. Van Andel, M. C. De Nooijer, R. Elfrink, Z. Wang and R. J. M. Vullers, “A batch process micromachined thermoelectric energy harvester: Fabrication and characterization,” Journal of Micromechanics and Microengineering, Vol. 20, pp. 6, 2010.
[11]L. Francioso, C. De Pascali, I. Farella, C. Martucci, P. Cret, P. Siciliano and A. Perrone, “Flexible thermoelectric generator for ambient assisted living wearable biometric sensors,” Journal of Power Sources, Vol. 196, pp. 3239-3243, 2011.
[12]D. Dávila, A. Tarancón, C. Calaza, M. Salleras, M. Fernández-Regúlez, A. San Paulo, and L. Fonseca, “Monolithically integrated thermoelectric energy harvester based on silicon nanowire arrays for powering micro/nanodevices,” Nano Energy, Vol. 1, pp. 812-819, 2012.
[13]S. E. Jo, M. K. Kim, M. S. Kim and Y.J. Kim, “Flexible thermoelectric generator for human body heat energy harvesting,” Electronics Letters, Vol. 48, pp. 1015-1017, 2012
[14]E. E. Aktakka, N. Ghafouri, Casey E. Smith, Rebecca L. Peterson, M. M. Hussain and K. Najafi, “Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate,” IEEE Electron Device Letters, Vol. 34, pp. 1334-1336, 2013.
[15]M. K. Kim, M. S. Kim, S. E. Jo, H. L. Kim, S. M. Lee and Y. J. Kim, “Wearable thermoelectric generator for human clothing applications,” Transducers and Eurosensors 2013, pp. 1376-1379, 2013.
[16]A. P. Perez-Marín, A .F. Lopeandía, Ll. Abad, P. Ferrando-Villaba, G. Garcia, A.M. Lopez, F.X. Muñoz-Pascual and J. Rodríguez-Viejo, “Micropower thermoelectric generator from thin Si membranes,” Nano Energy, Vol. 4, pp. 73-80, 2014.
[17]J. Y. Oh, J. H. Lee, S. W. Han, S. S. Chae, E. J. Bae, Y. H. Kang, W. J. Choi, S. Y. Cho, J. Lee, H. K. Baik and T. I. Lee, “Chemically exfoliated transition metal dichalcogenide nanosheet-based wearable thermoelectric generators,” Energy and Environmental Science, Vol. 9, pp. 1696-1705, 2016.
[18]Z. Lu, H. Zhang, C. Mao and C. M. Li, “Silk fabric-based wearable thermoelectric generator for energy harvesting from the human body,” Applied Energy, Vol. 164, pp. 57-63, 2016.
[19]A. R. M. Siddique, R. Rabari, S. Mahmud and B. V. Heyst, “Thermal energy harvesting from the human body using flexible thermoelectric generator (FTEG) fabricated by a dispenser printing technique,” Energy, Vol. 115, pp. 1081-1091, 2016.
[20]J. C. Peltier, “Nouvelles experiences sur la caloricite des courants electriques,” Ann. Chim , Vol. 56, pp. 371, 1834.
[21]M. Strasser, R. Aigner, C. Lauterbach, T.F. Sturm, M. Franosch and G. Wachutka, “Micro machined CMOS TEG as on-chip power supply,” Sensors and Actuators A, Vol. 144, pp. 362-370, 2004.
[22]S. M. Yang, T. Lee and C. A. Jeng, “Development of a thermoelectric energy harvester with thermal isolation cavity by standard CMOS process,” Sensors and Actuators A, Vol. 153, pp. 244-250, 2009.
[23]I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen and J. S. Kuo, “Development of low-cost micro-thermoelectric coolers utilizing MEMS technology,” Sensors and Actuators A: Physical, Vol. 148, pp. 176-185, 2008.
[24]康淵,陳信吉,ANSYS入門,全華圖書,2007。
[25]S. Wu, Q. Lin, Y. Yuen and Y. C. Tai, "MEMS flow sensors for nano-fluidic applications," Sensors and Actuators B, Vol. 89, pp. 152-158, 2001.
[26]維基百科。2014。薄膜電阻。網址: https://zh.wikipedia.org/wiki/%E8%96%84%E8%86%9C%E7%94%B5%E9%98%BB。上網日期:2017-08-02。
[27]The MOSIS Service。2016。Wafer Electrical Test Data and SPICE Model Parameters 。網址:https://www.mosis.com/requests/test-data。上網日期:2017-08-02。
[28]W. T. Chang and Y. Liang, "Geometric design of microbolometers made from CMOS polycrystalline silicon," IEEE Sensors Journal, Vol. 15, pp. 264-268, 2015.
[29]A. Nieto-Márquez, R. Romero, A. Romero and J. L. Valverde, “Carbon nanospheres: Synthesis, physicochemical properties and applications,” Journal of Materials Chemistry, Vol. 21, pp. 1664-1672, 2011.
[30]L. Zhou, K. Dong, Z. Chen, J. Ren and X. Qu, “Near-infrared absorbing mesoporous carbon nanoparticle as an intelligent drug carrier for dual-triggered synergistic cancer therapy,” Carbon, Vol. 82, pp. 479-488, 2015.
[31]G. Xu, S. Liu, H. Niu, W. Lv and R. Wu, “Functionalized mesoporous carbon nanoparticles for targeted chemo-photothermal therapy of cancer cells under near-infrared irradiation,” RSC Advances, Vol. 4, pp. 33986-33997, 2014.
[32]許正達,奈米材料應用在散熱技術設計與量測,中央大學碩士論文,2009。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top