跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/26 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李念勳
研究生(外文):Nien-Hsun Li
論文名稱:重金屬污泥高溫轉化為尖晶石材料之研究
論文名稱(外文):Transforming heavy metal sludge into spinel materials by high-temperature process
指導教授:駱尚廉駱尚廉引用關係
口試委員:張慶源魏銘彥張添晉高思懷
口試日期:2012-01-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:英文
論文頁數:107
中文關鍵詞:尖晶石重金屬污泥安定化吸附
外文關鍵詞:SpinelCopperHeavy metal sludgeCuFe2O4CuAl2O4StabilizationAdsorption
相關次數:
  • 被引用被引用:1
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
重金屬污泥為有害事業廢棄物之一,若未妥善處理將會危害環境及人體健康。以熱處理技術將重金屬汙泥轉化為礦物結構或陶瓷材料,可安定穩定化汙泥中之重金屬,且具有將廢棄污泥轉化為有用資材之潛勢,例如尖晶石材料。由於重金屬污泥所含成分與尖晶石合成原料相似,故以熱處理程序將重金屬污泥轉化為尖晶石材料並同時達到安定穩定化之目的是值得期待的。
研究中除評估重金屬污泥轉化為高經濟價值尖晶石材料之可行性外,也嘗試應用微波加熱技術合成尖晶石材料。實驗中將探討反應溫度、加熱時間、微波功率及不同氧化物之影響,並分析合成產物之物化特性。尖晶石轉化效率、安定化效率、固相化學反應及不同氧化物競爭機制也將一併討論。最後將尖晶石合成技術應用於實場污泥上,證實其實際應用之可行性,且進行以尖晶石吸附重金屬之初步試驗,以達到廢棄物資材化之最終目的。
結果顯示以熱處理程序在3小時800 °C操作條件下,模擬污泥可被轉化為銅鐵尖晶石(CuFe2O4)與銅鋁尖晶石(CuAl2O4)材料。而銅鐵尖晶石具有低溫(800~900 °C) tetragonal相及高溫(> 1000 °C) cubic相兩種不同晶型;而銅鋁尖晶石只具有單一晶相。在溫度超過1100 °C之後,兩種尖晶石皆會分解為delafossite相(CuFeO2及CuAlO2)。在經過長時間TCLP的測試後,兩種含銅尖晶石皆可大幅降低銅的溶出並達到安定穩定化的效果,而銅鐵尖晶石之安定穩定化效果優於銅鋁尖晶石。以FTIR鑑定尖晶石在四面體與八面體結構的吸收波段,也可證明尖晶石的形成,並證實銅離子在結構中的擴散是形成不同晶相銅鐵尖晶石之主因。而低溫tetragonal相之尖晶石具有硬磁性;高溫cubic相之尖晶石則具有軟磁性。因不同處理條件下所產生不同特性之尖晶石,將會影響後續廢棄物資材化的方向。而在同時具有氧化鐵及氧化鋁的汙泥中,氧化銅會優先與氧化鐵形成銅鐵尖晶石,且尖晶石於高溫之分解情形也將受到雜質之影響。另外以混和式微波加熱技術可成功合成兩種尖晶石,且可大幅縮短反應時間及減少能源消耗,比傳統加熱方式更具優勢。
在後續應用結果方面,實場污泥在未經過調質前,可於800 °C時形成銅鋁尖晶石,但高溫時在雜質的干擾下,尖晶石不會分解為delafossite相。實場汙泥經過調值燒結後,銅溶出濃度可較未調值更低,證實以高溫合成尖晶石法可有效將實場重金屬汙泥轉化為尖晶石結構並達成安定穩定化之目標。而重金屬吸附及再利用實驗中,磁性銅鐵尖晶石可以靜電吸附移除五種重金屬離子(Cu2+, Pb2+, Cd2+, Ni2+及Zn2+),五種金屬在12小時吸附時間的處理效率依序為92%, 90%, 81%, 80%及55%,移除效率會隨著pH增加而升高。再利用實驗也證實利用磁性分離技術可有效回收磁性吸附劑並重複使用,在六次重複試驗後,吸附效率仍可達80%。因此由上述結果可證實利用熱處理技術可將重金屬污泥轉化為尖晶石材料,除達到污泥安定穩定化之目標,也可達成廢棄物資源化再利用之最終目的。

Heavy metal sludge from metal surface treatment, anodizing, plating, and printed circuit board manufacture are hazardous solid waste. Stabilizing metal sludge via thermal treatment has the potential to convert hazardous metal sludge into mineral phase and reusable product, such as spinel ceramics. Owing to the composition of the heavy metal sludge is similar to the precursors of spinel mineral, including divalent metal oxides and trivalent metal oxides, the sintering processes for stabilizing or transforming the metal oxides into spinel structure will be expected.
The goal of this study is to evaluate the technical feasibility of incorporating heavy metal sludge into high-value spinel ceramics by thermal process, and thus to reduce the environmental hazard and promote the economic value of solid waste. The study tried to apply thermal processes, including conventional way and microwave energy, on the transforamtion of heavy metal sludge. The effects of temperature, sintering time, microwave power and different oxides were investigated in the study. The reactive mechanisms of reactants and the feasibility of following applications were also discussed.
Results indicated that CuFe2O4 and CuAl2O4 were also effectively formed at around 800 °C by the ferric oxide and gamma alumina precursors with 3 h of short sintering, respectively. Transformation of CuFe2O4 was found on two crystallographic spinel structures: the low-temperature (800~900 °C) tetragonal phase (t-CuFe2O4) and the high-temperature (~1000 °C) cubic phase (c-CuFe2O4), and CuAl2O4 was only found one crystallographic structures during the thermal process. At higher temperatures (~1100 °C), the formation of cuprous ferrite delafossite (CuFeO2) and cuprous aluminate delafossite (CuAlO2) phase from the dissociation of spinel was also noted. Both CuFe2O4 and CuAl2O4 spinel had a better intrinsic resistance to the acidic environment when compared to the CuO phase according to results of the modified TCLP test. But the CuFe2O4 structure is more stable under acidic environment than the CuAl2O4 structure. The observation of tetrahedral and octahedral absorption bands from FTIR results proved the formation of spinel structure, and the shift phenomenon was also confirmed by the occupancy of cations in different sites. Tetragonal phase CuFe2O4 provided hard magnetic characteristic at low temperatures, and the cubic phase CuFe2O4 provided soft magnetic characteristics at high temperatures. Different characteristics of CuFe2O4 produced at different temperatures will affect further applications on the environmental engineering. In the sample with hematite and gamma alumina, copper oxide would prefer to incorporate with Fe2O3 for forming spinel structure. CuFe2O4 and CuAl2O4 spinel were also successfully synthesized by hybrid microwave process which could significantly reduce the processing time and energy. The raw heavy metal sludge without adjustment could be transformed into CuAl2O4 spinel at the temperature of 800 °C. However, the dissociation of CuAl2O4 was not observed at high temperature, which was due to the impurities existed in samples. The raw heavy metal sludge could also be transformed into CuAl2O4 and significantly decreased the Cu leaching concentration after adjustment by thermal process. The results confirmed that the spinel synthesized technique could be successfully applied to the filed heavy metal sludge to get the objective of stabilization.
The adsorption/reusability experiments demonstrated that CuFe2O4 particles could be used as a magnetic adsorbent by electrostatic attraction to remove various metal ions (Cu2+, Pb2+, Cd2+, Ni2+, and Zn2+). The removal efficiencies of Cu2+, Pb2+, Cd2+, Ni2+, and Zn2+ with 12 h of contacting time were about 92%, 90%, 81%, 80%, and 55%, respectively. The removal efficiency of Cu2+ and Pb2+ gradually increased with the increase of pH. The regeneration tests also showed that the removal efficiency of Cu2+ during six cycles was > 80%, and the magnetic CuFe2O4 particles could repeatedly be used for metal ions removal in aqueous environments. Therefore, transforming heavy metal sludge into spinel materials could not obtain only the objective of stabilization but also the reutilization of solid waste.

口試委員會審定書 I
致謝 II
中文摘要 III
Abstract V
Content IX
List of Tables XI
List of Figures XII
1. Introduction 1
1.1 Research motivation 1
1.2 Research objectives 2
1.3 Research content 3
2. Literature review 5
2.1 Heavy metal sludge 5
2.2 Spinel 7
2.2.1 Synthesized technique for spinel 8
2.2.2 Transforming sludge into spinel structure 9
2.2.3 Spinel application on environmental engineering 13
2.3 Microwave technique and application 16
2.3.1 Microwave theorem 16
2.3.2 Microwave stabilization 18
2.3.3 Microwave synthesis for spinel 21
3. Research methods 25
3.1 Experimental chemicals and apparatus 25
3.1.1 Experimental chemicals 25
3.1.2 Experimental apparatus 26
3.2 Spinel Synthesized methods 28
3.2.1 Sample preparation 28
3.2.2 Conventional heating 30
3.2.3 Microwave heating 31
3.3 Product characteristic analysis 33
3.4 Toxic characteristic leaching procedure 34
3.5 Adsorption and reusability experiments 34
4. Results and discussions 37
4.1 Copper ferrite spinel 37
4.1.1 Thermal analysis of CuFe2O4 37
4.1.2 Transforming efficiency of CuFe2O4 38
4.1.3 FTIR analysis of CuFe2O4 46
4.1.4 Magnetic properties of CuFe2O4 47
4.1.5 Leaching behavior of CuFe2O4 52
4.2 Copper Aluminate spinel 56
4.2.1 Transforming efficiency of CuAl2O4 56
4.2.2 FTIR analysis of CuAl2O4 62
4.2.3 Leaching behavior of CuAl2O4 64
4.3 Transforming efficiency of CuO-Fe2O3-Al2O3 system 68
4.4 Synthesizing spinel by microwave process 71
4.5 Real heavy metal sludge 75
4.6 Adsorption and reusability of spinel 81
5. Conclusions 87
5.1 Synthesizing spinel from heavy metal sludge 87
5.2 Applications of spinel synthesized technique 90
5.3 Suggestions 91
Reference 93
Appendix 101

[1] C.-H. Hsieh, S.-L. Lo, W.-H. Kuan, C.-L. Chen, Adsorption of copper ions onto microwave stabilized heavy metal sludge, Journal of Hazardous Materials, 136 (2006) 338-344.
[2] C.-L. Chen, S.-L. Lo, W.-H. Kuan, C.-H. Hsieh, Stabilization of Cu in acid-extracted industrial sludge using a microwave process, Journal of Hazardous Materials, 123 (2005) 256-261.
[3] C.-L. Chen, S.-L. Lo, P.-T. Chiueh, W.-H. Kuan, C.-H. Hsieh, The assistance of microwave process in sludge stabilization with sodium sulfide and sodium phosphate, Journal of Hazardous Materials, 147 (2007) 930-937.
[4] C.-H. Hsieh, S.-L. Lo, P.-T. Chiueh, W.-H. Kuan, C.-L. Chen, Microwave enhanced stabilization of heavy metal sludge, Journal of Hazardous Materials, 139 (2007) 160-166.
[5] S.-Y. Chou, S.-L. Lo, C.-H. Hsieh, C.-L. Chen, Sintering of MSWI fly ash by microwave energy, Journal of Hazardous Materials, 163 (2009) 357-362.
[6] H.-C. Lu, J.-E. Chang, P.-H. Shih, L.-C. Chiang, Stabilization of copper sludge by high-temperature CuFe2O4 synthesis process, Journal of Hazardous Materials, 150 (2008) 504-509.
[7] K. Shih, J.O. Leckie, Nickel aluminate spinel formation during sintering of simulated Ni-laden sludge and kaolinite, Journal of the European Ceramic Society, 27 (2007) 91-99.
[8] K. Shih, T. White, J.O. Leckie, Spinel Formation for Stabilizing Simulated Nickel-Laden Sludge with Aluminum-Rich Ceramic Precursors, Environmental Science & Technology, 40 (2006) 5077-5083.
[9] K. Shih, T. White, J.O. Leckie, Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior, Environmental Science & Technology, 40 (2006) 5520-5526.
[10] R.D. Peelamedu, R. Roy, D.K. Agrawal, Microwave-induced reaction sintering of NiAl2O4, Materials Letters, 55 (2002) 234-240.
[11] G. Zhang, J. Qu, H. Liu, A.T. Cooper, R. Wu, CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration, Chemosphere, 68 (2007) 1058-1066.
[12] Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Separation and Purification Technology, 68 (2009) 312-319.
[13] R. Wu, J. Qu, H. He, Y. Yu, Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder, Applied Catalysis B: Environmental, 48 (2004) 49-56.
[14] Y. Fan, X.B. Lu, Y.W. Ni, H.J. Zhang, L. Zhao, J.P. Chen, C.L. Sun, Destruction of Polychlorinated Aromatic Compounds by Spinel-Type Complex Oxides, Environmental Science & Technology, 44 (2010) 3079-3084.
[15] Y. Tang, K. Shih, K. Chan, Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge, Chemosphere, 80 (2010) 375-380.
[16] C.-Y. Hu, K. Shih, J.O. Leckie, Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge, Journal of Hazardous Materials, 181 (2010) 399-404.
[17] C.G. Ramankutty, S. Sugunan, Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods, Applied Catalysis A: General, 218 (2001) 39-51.
[18] H.-C. Shin, S.-C. Choi, K.-D. Jung, S.-H. Han, Mechanism of M Ferrites (M = Cu and Ni) in the CO2 Decomposition Reaction, Chemistry of Materials, 13 (2001) 1238-1242.
[19] S. Yan, J. Geng, L. Yin, E. Zhou, Preparation of nanocrystalline NiZnCu ferrite particles by sol-gel method and their magnetic properties, Journal of Magnetism and Magnetic Materials, 277 (2004) 84-89.
[20] M. Han, Y. Ou, W. Chen, L. Deng, Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol-gel method with and without polyethylene glycol added, Journal of Alloys and Compounds, 474 (2009) 185-189.
[21] S. Verma, P.A. Joy, Y.B. Khollam, H.S. Potdar, S.B. Deshpande, Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method, Materials Letters, 58 (2004) 1092-1095.
[22] E.C. Sousa, C.R. Alves, R. Aquino, M.H. Sousa, G.F. Goya, H.R. Rechenberg, F.A. Tourinho, J. Depeyrot, Experimental evidence of surface effects in the magnetic dynamics behavior of ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 289 (2005) 118-121.
[23] R.K. Selvan, C.O. Augustin, L.J. Berchmans, R. Saraswathi, Combustion synthesis of CuFe2O4, Materials Research Bulletin, 38 (2003) 41-54.
[24] Y.M.Z. Ahmed, M.M. Hessien, M.M. Rashad, I.A. Ibrahim, Nano-crystalline copper ferrites from secondary iron oxide (mill scale), Journal of Magnetism and Magnetic Materials, 321 (2009) 181-187.
[25] W.M. Shaheen, A.A. Ali, Thermal solid-solid interaction and physicochemical properties of CuO-Fe2O3 system, International Journal of Inorganic Materials, 3 (2001) 1073-1081.
[26] F. Kenfack, H. Langbein, Influence of the temperature and the oxygen partial pressure on the phase formation in the system Cu - Fe - O, Crystal Research and Technology, 39 (2004) 1070-1079.
[27] N.M. Deraz, Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles, Journal of Alloys and Compounds, 501 (2010) 317-325.
[28] M. Sertkol, Y. Köseoglu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles, Journal of Alloys and Compounds, 486 (2009) 325-329.
[29] I. Ganesh, B. Srinivas, R. Johnson, B.P. Saha, Y.R. Mahajan, Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders, Journal of the European Ceramic Society, 24 (2004) 201-207.
[30] P. Yadoji, R. Peelamedu, D. Agrawal, R. Roy, Microwave sintering of Ni-Zn ferrites: comparison with conventional sintering, Materials Science and Engineering B, 98 (2003) 269-278.
[31] M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of calcinations temperature on physical properties of the nanocomposites containing spinel and CuO phases, Journal of Alloys and Compounds, 494 (2010) 275-284.
[32] F. Kenfack, H. Langbein, Spinel ferrites of the quaternary system Cu-Ni-Fe-O: Synthesis and characterization, Journal of Materials Science, 41 (2006) 3683-3693.
[33] M.P. Reddy, W. Madhuri, N.R. Reddy, K.V.S. Kumar, V.R.K. Murthy, R.R. Reddy, Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method, Materials Science and Engineering: C, 30 (2010) 1094-1099.
[34] Y.L. Wei, H.C. Wang, Y.W. Yang, J.F. Lee, The chemical transformation of copper in aluminium oxide during heating, Journal of Physics-Condensed Matter, 16 (2004) S3485-S3490.
[35] Y.Y. Tang, S.S.Y. Chui, K. Shih, L.R. Zhang, Copper Stabilization via Spinel Formation during the Sintering of Simulated Copper-Laden Sludge with Aluminum-Rich Ceramic Precursors, Environmental Science & Technology, 45 (2011) 3598-3604.
[36] X. Lu, K. Shih, Phase transformation and its role in stabilizing simulated lead-laden sludge in aluminum-rich ceramics, Water Research, 45 (2011) 5123-5129.
[37] M.M. Selim, T.M.H. Saber, N.A. Youssef, Thermal and spectroscopic study on the solid-solid interaction between CuO and Fe2O3 and the effect of sodium ions, Reactivity of Solids, 8 (1990) 189-196.
[38] M.M. Selim, N.A. Youssef, Thermal stability of CuO-Al2O3 system doped with sodium, Thermochimica Acta, 118 (1987) 57-63.
[39] X. Hou, J. Feng, Y. Ren, Z. Fan, M. Zhang, Synthesis and adsorption properties of spongelike porous MnFe2O4, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363 (2010) 1-7.
[40] N.N. Nassar, Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents, Journal of Hazardous Materials, 184 (2010) 538-546.
[41] J. Hu, I.M.C. Lo, G. Chen, Comparative study of various magnetic nanoparticles for Cr(VI) removal, Separation and Purification Technology, 56 (2007) 249-256.
[42] N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS, Journal of Hazardous Materials, 185 (2011) 1398-1404.
[43] R. Gherbi, N. Nasrallah, A. Amrane, R. Maachi, M. Trari, Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O4/TiO2, Journal of Hazardous Materials, 186 (2011) 1124-1130.
[44] J. Yanyan, L. Jinggang, S. Xiaotao, N. Guiling, W. Chengyu, G. Xiumei, CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation, Journal of Sol-Gel Science and Technology, 42 (2007) 41-45.
[45] E.T. Thostenson, T.W. Chou, Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing, 30 (1999) 1055-1071.
[46] K.E. Haque, Microwave energy for mineral treatment processes--a brief review, International Journal of Mineral Processing, 57 (1999) 1-24.
[47] B. Perez-Cid, I. Lavilla, C. Bendicho, Application of microwave extraction for partitioning of heavy metals in sewage sludge, Analytica Chimica Acta, 378 (1999) 201-210.
[48] B. Perez Cid, A. Fernandez Albores, E. Fernandez Gomez, E. Falque Lopez, Use of microwave single extractions for metal fractionation in sewage sludge samples, Analytica Chimica Acta, 431 (2001) 209-218.
[49] M. Bettinelli, G.M. Beone, S. Spezia, C. Baffi, Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis, Analytica Chimica Acta, 424 (2000) 289-296.
[50] J. Sastre, A. Sahuquillo, M. Vidal, G. Rauret, Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction, Analytica Chimica Acta, 462 (2002) 59-72.
[51] M. Roig, M. M. Ribera, G. Rauret, Application of the microwave oven to the pretreatment of macrosamples in environmental radioactivity monitoring, Journal of Radioanalytical and Nuclear Chemistry, 190 (1995) 59-69.
[52] A.M. de Andres, J. Merino, J.C. Galvan, E. Ruiz-Hitzky, Synthesis of pillared clays assisted by microwaves, Materials Research Bulletin, 34 (1999) 641-651.
[53] S.-Y. Chou, S.-L. Lo, C.-H. Hsieh, C.-L. Chen, Sintering of MSWI fly ash by microwave energy, Journal of Hazardous Materials, In Press, Corrected Proof.
[54] C.-L. Chen, S.-L. Lo, W.-H. Kuan, C.-H. Hsieh, Stabilization of copper-contaminated sludge using the microwave sintering, Journal of Hazardous Materials, 168 (2009) 857-861.
[55] C.-H. Hsieh, S.-L. Lo, C.-Y. Hu, K. Shih, W.-H. Kuan, C.-L. Chen, Thermal detoxification of hazardous metal sludge by applied electromagnetic energy, Chemosphere, 71 (2008) 1693-1700.
[56] E. Fagury-Neto, R.H.G.A. Kiminami, Al2O3/mullite/SiC powders synthesized by microwave-assisted carbothermal reduction of kaolin, Ceramics International, 27 (2001) 815-819.
[57] T.P. Deksnys, R.R. Menezes, E. Fagury-Neto, R.H.G.A. Kiminami, Synthesizing Al2O3/SiC in a microwave oven: A study of process parameters, Ceramics International, 33 (2007) 67-71.
[58] I. Ganesh, R. Johnson, G.V.N. Rao, Y.R. Mahajan, S.S. Madavendra, B.M. Reddy, Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder, Ceramics International, 31 (2005) 67-74.
[59] I. Gómez, M. Hernández, J. Aguilar, M. Hinojosa, Comparative study of microwave and conventional processing of MgAl2O4-based materials, Ceramics International, 30 (2004) 893-900.
[60] T. Ebadzadeh, E. Marzban-Rad, Microwave hybrid synthesis of silicon carbide nanopowders, Materials Characterization, 60 (2009) 69-72.
[61] N.M. Deraz, M.M. Hessien, Structural and magnetic properties of pure and doped nanocrystalline cadmium ferrite, Journal of Alloys and Compounds, 475 (2009) 832-839.
[62] S. Omeiri, Y. Gabès, A. Bouguelia, M. Trari, Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions, Journal of Electroanalytical Chemistry, 614 (2008) 31-40.
[63] S. Schaefer, G. Hundley, F. Block, R. McCune, R. Mrazek, Phase equilibria and X-ray diffraction investigation of the system Cu−Fe−O, Metallurgical and Materials Transactions B, 1 (1970) 2557-2563.
[64] T.R. Zhao, M. Hasegawa, T. Kondo, T. Yagi, H. Takei, X-Ray diffraction study of copper iron oxide [CuFeO2] under pressures up to 10 Gpa, Materials Research Bulletin, 32 (1997) 151-157.
[65] K. Park, K.Y. Ko, H.C. Kwon, S. Nahm, Improvement in thermoelectric properties of CuAlO2 by adding Fe2O3, Journal of Alloys and Compounds, 437 (2007) 1-6.
[66] S.M. El-Sheikh, F.A. Harraz, M.M. Hessien, Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique, Materials Chemistry and Physics, 123 (2010) 254-259.
[67] P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution, Current Applied Physics, 11 (2011) 101-108.
[68] J.Z. Jiang, G.F. Goya, H.R. Rechenberg, Magnetic properties of nanostructured CuFe2O4, Journal of Physics: Condensed Matter, 11 (1999) 4063.
[69] W.D. Callister, Materials Science and Engineering, An Introduction, 7th ed., John Wiley & Sons, New York, 2003.
[70] W. Strumm, J.J. Morgan, Aquatic Chemistry, third ed, Wiley Interscience, New York, 1996.
[71] I. Levin, D. Brandon, Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences, Journal of the American Ceramic Society, 81 (1998) 1995-2012.
[72] M.N. Barroso, M.F. Gomez, J.A. Gamboa, L.A. Arrúa, M.C. Abello, Preparation and characterization of CuZnAl catalysts by citrate gel process, Journal of Physics and Chemistry of Solids, 67 (2006) 1583-1589.
[73] C. Morterra, G. Magnacca, A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species, Catalysis Today, 27 (1996) 497-532.
[74] V.K. Sankaranarayanan, C. Sreekumar, Precursor synthesis and microwave processing of nickel ferrite nanoparticles, Current Applied Physics, 3 (2003) 205-208.
[75] N. Nashaat N, Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents, Journal of Hazardous Materials, 184 (2010) 538-546.
[76] S.B. Johnson, G.V. Franks, P.J. Scales, D.V. Boger, T.W. Healy, Surface chemistry–rheology relationships in concentrated mineral suspensions, International Journal of Mineral Processing, 58 (2000) 267-304.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top