|
[1] C.-H. Hsieh, S.-L. Lo, W.-H. Kuan, C.-L. Chen, Adsorption of copper ions onto microwave stabilized heavy metal sludge, Journal of Hazardous Materials, 136 (2006) 338-344. [2] C.-L. Chen, S.-L. Lo, W.-H. Kuan, C.-H. Hsieh, Stabilization of Cu in acid-extracted industrial sludge using a microwave process, Journal of Hazardous Materials, 123 (2005) 256-261. [3] C.-L. Chen, S.-L. Lo, P.-T. Chiueh, W.-H. Kuan, C.-H. Hsieh, The assistance of microwave process in sludge stabilization with sodium sulfide and sodium phosphate, Journal of Hazardous Materials, 147 (2007) 930-937. [4] C.-H. Hsieh, S.-L. Lo, P.-T. Chiueh, W.-H. Kuan, C.-L. Chen, Microwave enhanced stabilization of heavy metal sludge, Journal of Hazardous Materials, 139 (2007) 160-166. [5] S.-Y. Chou, S.-L. Lo, C.-H. Hsieh, C.-L. Chen, Sintering of MSWI fly ash by microwave energy, Journal of Hazardous Materials, 163 (2009) 357-362. [6] H.-C. Lu, J.-E. Chang, P.-H. Shih, L.-C. Chiang, Stabilization of copper sludge by high-temperature CuFe2O4 synthesis process, Journal of Hazardous Materials, 150 (2008) 504-509. [7] K. Shih, J.O. Leckie, Nickel aluminate spinel formation during sintering of simulated Ni-laden sludge and kaolinite, Journal of the European Ceramic Society, 27 (2007) 91-99. [8] K. Shih, T. White, J.O. Leckie, Spinel Formation for Stabilizing Simulated Nickel-Laden Sludge with Aluminum-Rich Ceramic Precursors, Environmental Science & Technology, 40 (2006) 5077-5083. [9] K. Shih, T. White, J.O. Leckie, Nickel stabilization efficiency of aluminate and ferrite spinels and their leaching behavior, Environmental Science & Technology, 40 (2006) 5520-5526. [10] R.D. Peelamedu, R. Roy, D.K. Agrawal, Microwave-induced reaction sintering of NiAl2O4, Materials Letters, 55 (2002) 234-240. [11] G. Zhang, J. Qu, H. Liu, A.T. Cooper, R. Wu, CuFe2O4/activated carbon composite: A novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration, Chemosphere, 68 (2007) 1058-1066. [12] Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification, Separation and Purification Technology, 68 (2009) 312-319. [13] R. Wu, J. Qu, H. He, Y. Yu, Removal of azo-dye Acid Red B (ARB) by adsorption and catalytic combustion using magnetic CuFe2O4 powder, Applied Catalysis B: Environmental, 48 (2004) 49-56. [14] Y. Fan, X.B. Lu, Y.W. Ni, H.J. Zhang, L. Zhao, J.P. Chen, C.L. Sun, Destruction of Polychlorinated Aromatic Compounds by Spinel-Type Complex Oxides, Environmental Science & Technology, 44 (2010) 3079-3084. [15] Y. Tang, K. Shih, K. Chan, Copper aluminate spinel in the stabilization and detoxification of simulated copper-laden sludge, Chemosphere, 80 (2010) 375-380. [16] C.-Y. Hu, K. Shih, J.O. Leckie, Formation of copper aluminate spinel and cuprous aluminate delafossite to thermally stabilize simulated copper-laden sludge, Journal of Hazardous Materials, 181 (2010) 399-404. [17] C.G. Ramankutty, S. Sugunan, Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods, Applied Catalysis A: General, 218 (2001) 39-51. [18] H.-C. Shin, S.-C. Choi, K.-D. Jung, S.-H. Han, Mechanism of M Ferrites (M = Cu and Ni) in the CO2 Decomposition Reaction, Chemistry of Materials, 13 (2001) 1238-1242. [19] S. Yan, J. Geng, L. Yin, E. Zhou, Preparation of nanocrystalline NiZnCu ferrite particles by sol-gel method and their magnetic properties, Journal of Magnetism and Magnetic Materials, 277 (2004) 84-89. [20] M. Han, Y. Ou, W. Chen, L. Deng, Magnetic properties of Ba-M-type hexagonal ferrites prepared by the sol-gel method with and without polyethylene glycol added, Journal of Alloys and Compounds, 474 (2009) 185-189. [21] S. Verma, P.A. Joy, Y.B. Khollam, H.S. Potdar, S.B. Deshpande, Synthesis of nanosized MgFe2O4 powders by microwave hydrothermal method, Materials Letters, 58 (2004) 1092-1095. [22] E.C. Sousa, C.R. Alves, R. Aquino, M.H. Sousa, G.F. Goya, H.R. Rechenberg, F.A. Tourinho, J. Depeyrot, Experimental evidence of surface effects in the magnetic dynamics behavior of ferrite nanoparticles, Journal of Magnetism and Magnetic Materials, 289 (2005) 118-121. [23] R.K. Selvan, C.O. Augustin, L.J. Berchmans, R. Saraswathi, Combustion synthesis of CuFe2O4, Materials Research Bulletin, 38 (2003) 41-54. [24] Y.M.Z. Ahmed, M.M. Hessien, M.M. Rashad, I.A. Ibrahim, Nano-crystalline copper ferrites from secondary iron oxide (mill scale), Journal of Magnetism and Magnetic Materials, 321 (2009) 181-187. [25] W.M. Shaheen, A.A. Ali, Thermal solid-solid interaction and physicochemical properties of CuO-Fe2O3 system, International Journal of Inorganic Materials, 3 (2001) 1073-1081. [26] F. Kenfack, H. Langbein, Influence of the temperature and the oxygen partial pressure on the phase formation in the system Cu - Fe - O, Crystal Research and Technology, 39 (2004) 1070-1079. [27] N.M. Deraz, Size and crystallinity-dependent magnetic properties of copper ferrite nano-particles, Journal of Alloys and Compounds, 501 (2010) 317-325. [28] M. Sertkol, Y. Köseoglu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, Microwave synthesis and characterization of Zn-doped nickel ferrite nanoparticles, Journal of Alloys and Compounds, 486 (2009) 325-329. [29] I. Ganesh, B. Srinivas, R. Johnson, B.P. Saha, Y.R. Mahajan, Microwave assisted solid state reaction synthesis of MgAl2O4 spinel powders, Journal of the European Ceramic Society, 24 (2004) 201-207. [30] P. Yadoji, R. Peelamedu, D. Agrawal, R. Roy, Microwave sintering of Ni-Zn ferrites: comparison with conventional sintering, Materials Science and Engineering B, 98 (2003) 269-278. [31] M. Srivastava, A.K. Ojha, S. Chaubey, P.K. Sharma, A.C. Pandey, Influence of calcinations temperature on physical properties of the nanocomposites containing spinel and CuO phases, Journal of Alloys and Compounds, 494 (2010) 275-284. [32] F. Kenfack, H. Langbein, Spinel ferrites of the quaternary system Cu-Ni-Fe-O: Synthesis and characterization, Journal of Materials Science, 41 (2006) 3683-3693. [33] M.P. Reddy, W. Madhuri, N.R. Reddy, K.V.S. Kumar, V.R.K. Murthy, R.R. Reddy, Influence of copper substitution on magnetic and electrical properties of MgCuZn ferrite prepared by microwave sintering method, Materials Science and Engineering: C, 30 (2010) 1094-1099. [34] Y.L. Wei, H.C. Wang, Y.W. Yang, J.F. Lee, The chemical transformation of copper in aluminium oxide during heating, Journal of Physics-Condensed Matter, 16 (2004) S3485-S3490. [35] Y.Y. Tang, S.S.Y. Chui, K. Shih, L.R. Zhang, Copper Stabilization via Spinel Formation during the Sintering of Simulated Copper-Laden Sludge with Aluminum-Rich Ceramic Precursors, Environmental Science & Technology, 45 (2011) 3598-3604. [36] X. Lu, K. Shih, Phase transformation and its role in stabilizing simulated lead-laden sludge in aluminum-rich ceramics, Water Research, 45 (2011) 5123-5129. [37] M.M. Selim, T.M.H. Saber, N.A. Youssef, Thermal and spectroscopic study on the solid-solid interaction between CuO and Fe2O3 and the effect of sodium ions, Reactivity of Solids, 8 (1990) 189-196. [38] M.M. Selim, N.A. Youssef, Thermal stability of CuO-Al2O3 system doped with sodium, Thermochimica Acta, 118 (1987) 57-63. [39] X. Hou, J. Feng, Y. Ren, Z. Fan, M. Zhang, Synthesis and adsorption properties of spongelike porous MnFe2O4, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 363 (2010) 1-7. [40] N.N. Nassar, Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents, Journal of Hazardous Materials, 184 (2010) 538-546. [41] J. Hu, I.M.C. Lo, G. Chen, Comparative study of various magnetic nanoparticles for Cr(VI) removal, Separation and Purification Technology, 56 (2007) 249-256. [42] N. Nasrallah, M. Kebir, Z. Koudri, M. Trari, Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS, Journal of Hazardous Materials, 185 (2011) 1398-1404. [43] R. Gherbi, N. Nasrallah, A. Amrane, R. Maachi, M. Trari, Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O4/TiO2, Journal of Hazardous Materials, 186 (2011) 1124-1130. [44] J. Yanyan, L. Jinggang, S. Xiaotao, N. Guiling, W. Chengyu, G. Xiumei, CuAl2O4 powder synthesis by sol-gel method and its photodegradation property under visible light irradiation, Journal of Sol-Gel Science and Technology, 42 (2007) 41-45. [45] E.T. Thostenson, T.W. Chou, Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing, 30 (1999) 1055-1071. [46] K.E. Haque, Microwave energy for mineral treatment processes--a brief review, International Journal of Mineral Processing, 57 (1999) 1-24. [47] B. Perez-Cid, I. Lavilla, C. Bendicho, Application of microwave extraction for partitioning of heavy metals in sewage sludge, Analytica Chimica Acta, 378 (1999) 201-210. [48] B. Perez Cid, A. Fernandez Albores, E. Fernandez Gomez, E. Falque Lopez, Use of microwave single extractions for metal fractionation in sewage sludge samples, Analytica Chimica Acta, 431 (2001) 209-218. [49] M. Bettinelli, G.M. Beone, S. Spezia, C. Baffi, Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis, Analytica Chimica Acta, 424 (2000) 289-296. [50] J. Sastre, A. Sahuquillo, M. Vidal, G. Rauret, Determination of Cd, Cu, Pb and Zn in environmental samples: microwave-assisted total digestion versus aqua regia and nitric acid extraction, Analytica Chimica Acta, 462 (2002) 59-72. [51] M. Roig, M. M. Ribera, G. Rauret, Application of the microwave oven to the pretreatment of macrosamples in environmental radioactivity monitoring, Journal of Radioanalytical and Nuclear Chemistry, 190 (1995) 59-69. [52] A.M. de Andres, J. Merino, J.C. Galvan, E. Ruiz-Hitzky, Synthesis of pillared clays assisted by microwaves, Materials Research Bulletin, 34 (1999) 641-651. [53] S.-Y. Chou, S.-L. Lo, C.-H. Hsieh, C.-L. Chen, Sintering of MSWI fly ash by microwave energy, Journal of Hazardous Materials, In Press, Corrected Proof. [54] C.-L. Chen, S.-L. Lo, W.-H. Kuan, C.-H. Hsieh, Stabilization of copper-contaminated sludge using the microwave sintering, Journal of Hazardous Materials, 168 (2009) 857-861. [55] C.-H. Hsieh, S.-L. Lo, C.-Y. Hu, K. Shih, W.-H. Kuan, C.-L. Chen, Thermal detoxification of hazardous metal sludge by applied electromagnetic energy, Chemosphere, 71 (2008) 1693-1700. [56] E. Fagury-Neto, R.H.G.A. Kiminami, Al2O3/mullite/SiC powders synthesized by microwave-assisted carbothermal reduction of kaolin, Ceramics International, 27 (2001) 815-819. [57] T.P. Deksnys, R.R. Menezes, E. Fagury-Neto, R.H.G.A. Kiminami, Synthesizing Al2O3/SiC in a microwave oven: A study of process parameters, Ceramics International, 33 (2007) 67-71. [58] I. Ganesh, R. Johnson, G.V.N. Rao, Y.R. Mahajan, S.S. Madavendra, B.M. Reddy, Microwave-assisted combustion synthesis of nanocrystalline MgAl2O4 spinel powder, Ceramics International, 31 (2005) 67-74. [59] I. Gómez, M. Hernández, J. Aguilar, M. Hinojosa, Comparative study of microwave and conventional processing of MgAl2O4-based materials, Ceramics International, 30 (2004) 893-900. [60] T. Ebadzadeh, E. Marzban-Rad, Microwave hybrid synthesis of silicon carbide nanopowders, Materials Characterization, 60 (2009) 69-72. [61] N.M. Deraz, M.M. Hessien, Structural and magnetic properties of pure and doped nanocrystalline cadmium ferrite, Journal of Alloys and Compounds, 475 (2009) 832-839. [62] S. Omeiri, Y. Gabès, A. Bouguelia, M. Trari, Photoelectrochemical characterization of the delafossite CuFeO2: Application to removal of divalent metals ions, Journal of Electroanalytical Chemistry, 614 (2008) 31-40. [63] S. Schaefer, G. Hundley, F. Block, R. McCune, R. Mrazek, Phase equilibria and X-ray diffraction investigation of the system Cu−Fe−O, Metallurgical and Materials Transactions B, 1 (1970) 2557-2563. [64] T.R. Zhao, M. Hasegawa, T. Kondo, T. Yagi, H. Takei, X-Ray diffraction study of copper iron oxide [CuFeO2] under pressures up to 10 Gpa, Materials Research Bulletin, 32 (1997) 151-157. [65] K. Park, K.Y. Ko, H.C. Kwon, S. Nahm, Improvement in thermoelectric properties of CuAlO2 by adding Fe2O3, Journal of Alloys and Compounds, 437 (2007) 1-6. [66] S.M. El-Sheikh, F.A. Harraz, M.M. Hessien, Magnetic behavior of cobalt ferrite nanowires prepared by template-assisted technique, Materials Chemistry and Physics, 123 (2010) 254-259. [67] P. Laokul, V. Amornkitbamrung, S. Seraphin, S. Maensiri, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloe vera extract solution, Current Applied Physics, 11 (2011) 101-108. [68] J.Z. Jiang, G.F. Goya, H.R. Rechenberg, Magnetic properties of nanostructured CuFe2O4, Journal of Physics: Condensed Matter, 11 (1999) 4063. [69] W.D. Callister, Materials Science and Engineering, An Introduction, 7th ed., John Wiley & Sons, New York, 2003. [70] W. Strumm, J.J. Morgan, Aquatic Chemistry, third ed, Wiley Interscience, New York, 1996. [71] I. Levin, D. Brandon, Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences, Journal of the American Ceramic Society, 81 (1998) 1995-2012. [72] M.N. Barroso, M.F. Gomez, J.A. Gamboa, L.A. Arrúa, M.C. Abello, Preparation and characterization of CuZnAl catalysts by citrate gel process, Journal of Physics and Chemistry of Solids, 67 (2006) 1583-1589. [73] C. Morterra, G. Magnacca, A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species, Catalysis Today, 27 (1996) 497-532. [74] V.K. Sankaranarayanan, C. Sreekumar, Precursor synthesis and microwave processing of nickel ferrite nanoparticles, Current Applied Physics, 3 (2003) 205-208. [75] N. Nashaat N, Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents, Journal of Hazardous Materials, 184 (2010) 538-546. [76] S.B. Johnson, G.V. Franks, P.J. Scales, D.V. Boger, T.W. Healy, Surface chemistry–rheology relationships in concentrated mineral suspensions, International Journal of Mineral Processing, 58 (2000) 267-304.
|