跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/24 13:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鍾瑞嬰
研究生(外文):Jui-Yin Chung
論文名稱:磷酸根及重金屬離子在針鐵礦上之吸附平衡
論文名稱(外文):Adsorption Equilibria of Phosphate and Heavy Metal Ions onto Goethite
指導教授:莊瑞鑫莊瑞鑫引用關係
指導教授(外文):Ruey-Shin Juang
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
論文頁數:75
中文關鍵詞:針鐵礦磷酸根重金屬離子吸附平衡
外文關鍵詞:GoethitePhosphateHeavy Metal IonsAdsorption equilibria
相關次數:
  • 被引用被引用:8
  • 點閱點閱:710
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:1
針鐵礦(Goethite,a-FeO·OH)為一水合鐵氧化物,普遍存在於熱帶及亞熱帶環境土壤中,是土壤中最穩定的(氫)氧化態。本實驗自行合成針鐵礦探討重金屬-銅、鋅及磷酸根於針鐵礦表面之吸附情形,實驗變因有溶液濃度、pH 值與溫度,並控制背景離子強度為 0.1 mol/L NaNO3。
研究結果顯示,在重金屬吸附方面,吸附量隨 pH 值增加、溫度升高而增加,吸附過程屬於吸熱反應, pH值高者,吸附熱較小,因為pH值高者在相同條件(同一溫度、相同初始濃度)下,比較容易吸附,所以所需的反應吸附熱也就較小。 Cu2+ 的吸附量大於Zn2+ 。在等溫吸附方面,兩金屬吸附模式皆符合 Langmuir 等溫式;Cu2+ 與Zn2+ 在 35 ℃、pH 5.0時,最大吸附量分別為82與25 mmol/kg。
在雙成分金屬系統中,對於吸附量本來就比較低的Zn2+,在競爭後其吸附量更低。而Cu2+的吸附量卻比由Langmuir competitive model計算所得之理論值要高。
在針鐵礦吸附磷酸根方面,磷酸根吸附量隨pH值降低、溫度升高而增加;吸附過程也是屬於吸熱反應。在較低的pH值下,吸附熱較小,因為pH值低者在相同條件(同一溫度、相同初始濃度)下,吸附比較容易發生,因此反應所需的吸附熱也就較小。吸附模式符合 Langmuir 等溫式。在 35 ℃、pH 2.5 時針鐵礦對磷酸根的最大吸附量為 200 mmol/kg 。
在磷酸根與 Cu2+ 共存的系統中,磷酸根的存在有助於針鐵礦對Cu2+ 的吸附;而Cu2+ 也使磷酸根在高pH值的吸附量增加,此雙成分系統為協同吸附。
Goethite [a-FeO·OH], a kind of hydrated iron(III) oxide, was often encountered on the tropical and subtropical areas, and was the most stable (hydro-) oxidation state in soil. This study investigated the adsorption equilibria of single heavy metal-copper(II), zinc(II), and phosphate, as well as the competitive adsorption equilibria of binary copper(II) zinc(II) as well as binary phosphate and copper(II) onto synthesized goethite. All experiments were carried out at different temperatures (15~35℃), initial adsorbate concentrations, and pH values. The ionic strength was maintained at 0.1 mol/L of NaNO3.
The amounts of heavy metals adsorbed decreased with decreasing pH, but increased in the case of single phosphate. In addition, the amounts of both heavy metals and single phosphate adsorbed increased as temperature was increased. All adsorption processes were endothermic. At a given equilibrium pH, the adsorption isotherms of single phosphate and heavy metals could be well described by the Langmuir equation.
In the binary─copper(II)/zinc(II) system, the amounts of znic(II) adsorbed was decreased. However, in the binary copper(II)/phosphate system, the amounts of copper(II) and phosphate adsorbed were enhanced.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
符號說明 X
第一章 緒論 1
1-1 前言 1
1-2 土壤簡介 2
1-3 土壤重金屬污染處理 3
1-4 土壤中之磷酸鹽 4
1-4.1磷酸鹽的一般性質 5
1-4.2磷酸鹽之吸附行為 6
1-5 土壤中磷酸鹽與重金屬之關係 7
1-6 吸附理論 9
1-6.1 物理吸附與化學吸附 9
1-6.2 專性吸附與非專性吸附 10
1-6.3 等溫吸附模式 11
1-7 針鐵礦之特性 13
1-7.1 氧化物的性質 13
1-7.3 氧化鐵的種類 15
1-7.4 針鐵礦 16
1-7.5 針鐵礦之表面特性 19
1-7.6 針鐵礦之表面錯合反應 20
1-8針鐵礦的應用 21
1-8.1對陽離子之吸附反應 22
1-8.2 對陰離子之吸附反應 23
1-9 離子強度對吸附反應的影響 24
1-10 研究動機與目的 25
第二章 實驗部分 26
2-1 實驗藥品及儀器 26
2-1.1 藥品部分 26
2-1.2儀器部份 27
2-2 實驗步驟 28
2-2.1 針鐵礦的製備 28
2-2.2 批式平衡吸附 29
2-3 分析方法 31
2-3.1感應耦合電漿放射光譜儀(ICP-AES) 31
2-3.2 表面電位分析儀 33
第三章 結果與討論 34
3-1 針鐵礦物性分析 34
3-1.1 元素分析 34
3-1.2 X光繞射分析 36
3-1.3表面結構 36
3-1.4 表面電位分析 37
3-2 批次吸附平衡 38
3-2.1 重金屬吸附 38
3-2.2 磷酸根之吸附 49
第四章 結論 58
參考文獻 59
自述 65
Ali, M. A.; Dzombak, D. A. “Interactions of copper, organic acids, and sulfate in goethite suspensions,” Goechim. et Cosmochim. Acta, 60(4), 5045-5053 (1996).
Angove, M. J.; Wells, J. D.; Johnson, B. B. “The influence of temperature on the adsorption of cadmium(II) and cobalt(II) on goethite,” J. Colloid Interface Sci., 211, 281-290 (1999).
Bargar, J. R.; Brown, G. E. Jr.; Parks, G. A. “Surface complexation of Pb(II) at oxide-water interface:III. XAFS determination of Pb(II) and Pb(II)-chloro adsorption complexes on goethite and alumina,” Goechim. et Cosmochim. Acta, 62 (2), 193-207 (1998).
Barrow, N. J., “The effects of phosphate on zinc sorption by a soil,” J. Soil. Sci, 38, 453-459 (1987).
Benjamin, M. M., “Multiple-site adsorption of Cd, Cu, Zn, and Pb on amorphous iron oxyhydroxide,” J. Colloid Interface Sci., 79, 209-221 (1987).
Bohn, H. L., Brian L. Mcneal and George A. O’connor, “Soil Chemistry,”Second edition, John Wiley & Sons, Inc. (1985).
Bolland, M. D. A., A. M. Posner and J. P. Quirk, “Zinc adsorption by goethite in the absence and presence of phosphates,” Aust. J. Soil Res., 15, 279-286 (1977).
Borggaard, O. K., S. S. Iorgensen, J. P. Moberg and B. Raben-Lange, “Influence of organic matter on phosphate adsorption by aluminium and iron oxides in sandy soils,” J. Soil Sci, 41, 443-449 (1990).
Bruemmer, G. W., Gerth J. and Tiller K. G., “Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite, I. adsorption and diffusion of metals,” J. Soil Sci., 39, 37-52 (1988).
Chang, L. Y., and McCoy B. J., “Alternative waste minimization analyses for the printed circuit board industry: Examples for small and large manufacturers,” Environ. Prog., 10(2), 110-121 (1991).
Christensen, T. H., “Cadmium soil sorption at low concentrations: I. Effect of time, cadmium load, pH, and calcium,” Water, Air, Soil Pollution, 21, 105-114 (1984).
Chuan, M. C.; Shu, G. Y. and Liu, J. C. “Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH,” Water, Air, Soil Pollution, 90, 543-556 (1996).
Diaz-Barrientos, E., L. Madrid, M. C. Contreras and E. Morillo, “Simulateous adsorption of zinc and phosphate on syntheetic lepidocrocite,” Aust. J. Soil Res., 28, 549-557 (1990).
Forbes, E. A., Posner, A. M., and Quirk, J. P. “The specific adsorption of divalent Cd, Co, Cu, Pb and Zn on goethite,” J. Soil Sci., 27, 154-166 (1976).
Hansmann, D. D. and M. A. Anderson “Using electrophoresis in modeling sulfate, and phosphate adsorption onto goethite,” Environ. Sci. Technol., 19, 544-551 (1985).
Hayes, K. F. and J. O. Leckie, “Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces,” J. Colloid Interface Sci., 115, 564-572 (1987).
Hayes, K. F., C. P. Papelis and J. O. Leckie, “Modeling ionic strength effects on anion adsorption at Hydrous oxide/solution interfaces,” J. Colloid Interface Sci., 125, 717-726 (1988).
Haynes, R. J. and R. D. Swift, “Effect of liming and air-dring on the adsorption of phosphate by some acid soils,” J. Soil Sci., 36, 513-521 (1985).
Haynes, R. J. and R. D. Swift, “The effect of pH and drying on adsorption of extractability and uptake of cadmuim in soils,” J. Soil Sci., 44, 641-650 (1993).
Juang, R. S.; Wu, W. L.; “Adsorption of sulfate and copper(II) on goethite in relation to the change of zeta potentials,” J. Colloid Interface Sci., 249, 22-29 (2002).
Kuo, S. and B. L. McNeal, “Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide,” Soil Sci. Soc. Am. J., 48, 1040-1044 (1984).
Li, L.; Stanforth, R. “Distinguishing adsorption and surface precipitation of phosphate on goethite (a- FeOOH),” J. Colloid Interface Sci., 230, 12-21 (2000).
Ma, Q. Y. and Lindsay, W. L. “Estimation of Cd2+ and Ni2+ activities in soils by chelation,” Geoderma, 68, 123-133 (1995).
Machesky, M. L.; Bischoff, B. L., and Anderson. M. A. “Calorimetric investigation of anion adsorption onto goethite,” Environ. Sci. Technol., 23, 580-587 (1989).
Madrid, L., E. Diaz-Barrientos and M. C. Contreras, “Relationships between zinc and phosphate adsorption on montmorillonite and an iron oxyhydroxide,” Aust. J. Soil Res., 29, 123-133 (1995).
Mckenzie, R. M., “The adsorption of molybdeum on oxide surface,” J. Soil Res., 21, 505-513 (1983).
Mclaughlin, J. R., Ryden J. C. and Syers, J. K, “Sorption of inorganic phosphate by iron and aluminum containing components,” J. Soil Sci., 32, 365-377 (1981).
Nowack, B.; Stone, A. T. “Adsorption of phosphates onto the goethite-water interface,” J. Colloid Interface Sci., 214, 20-30 (1999).
Parfitt, R. L. and Atkinsin, R. J. “Phosphate adsorption on goethite (a-FeOOH),” Nature, 264, 740-742 (1976).
Pivovarov, S. “Adsorption of cadmium onto hematie:Temperature dependence,” J. Colloid Interface Sci., 234, 1-8 (2001).
Posselt, H. S.; Anderson, F. J. and Weber, W. J. J. “Cation sorption on colloidal hydrous manganese dioxide,” Environ. Sci. Technol., 2, 1087-1093 (1968).
Rajan, S. S. S., “Change in net surface charge of hydrous alumina with phosphate adsorption” , Nature, 262, 45-46 (1972).
Rietra, R. P. J. J., Hiemstra, T. and Riemsdijk, W. H., “Electrolyte anion affinity and its effect on oxyanion adsorption on goethite,” J. Colloid Interface Sci., 229, 199-206 (2000).
Rodda, D. P., Johnson, B. B. and Wells, J. D., “The effect of temperature and pH on the adsorption of copper(II), lead(II), and zinc(II) onto goethite,” J. Colloid Interface Sci., 161, 57-62 (1993).
Ryden, J. C., J. K. Syers and R. F. Harries, “Phosphorus in runoff and streams,” Adv. Agron., 25, 1-45 (1973).
Sah, R. N., D. S Milkkelsen and A. A. Hafez, “Phpsphorus behavior in flooded-drained soils. II. Iron transformation and phosphate sorption,” Soil Sci. Soc. Am. J., 53, 1723-1729 (1989).
Schwertmann, U. and Taylor R. M., “Iron oxides” In: Minerals in Soil Environments, Dixon, J. B., Weed S. B. (eds.), 2nd ed., Soil Sci. Soc. Am. J., Medison, Wisconsin, USA, pp. 379-428(1989).
Schwertmann, U.; Cornell, R. M. “Iron Oxides in the Laboratory:Preparation and Characteristation,” VCH, Weinhein, New York (1991).
Shang, C., P. M. Huang, and J. W. B. Stewart. “Kinetics of adsorption of organic and inorganic phosphates by short-range orderd precipitate of aluminum,” Soil Sci. Can. J., 70, 461-470 (1990).
Sposito, G. “The Chemistry of Soils,” Oxford Univ. press, New York (1989).
Stumm, W., “Chemistry of the Solid-Water Interface,” Wiley, New York (1992).
Stumm, W., ed. “Aquatics Surface Chemistry,” Wiley (Interscience), New York (1987).
Tadwira, F., M. Piha and L. Mugwirs, “Zinc studies in zimbabwean soil : Effect of pH and phosphaorus on zinc adsorption by two zimbabwean soils,” Commun. Soil Sci. Plant Anal., 19, 873-886 (1988).
Trivedi, P., Axe, L. and Dyer, J. “Adsorption of metal ions onto goethite : single-adsorbate and competitive systems,” Colloids and Surfaces A, 191, 107-121 (2001).
Tunay O., Kabdasli I. and Tasli R., “Pretreatment of complexed metals wastewaters,” Water Sci. Technol., 29(9), 265-274 (1994).
Xie, R. J. and A. F. Mackenzie, “Effects of sorbed orthophosphate on zinc status in three soils of eastern canada,” J. Soil Sci., 40 49-58 (1989).
Xie, R. J. and A. F. Mackenzie, “The pH effect on sorption-desorption and fractions of zinc in phosphate treated soils,” Commun. Soil Sci. Plant Anal., 24, 701-716 (1993).
王一雄、陳尊賢與李達源,「土壤污染學」,國立空中大學,台北(1995)。
王明光譯,「土壤環境化學」,國立編譯館出版 (1997)。
王明光譯,「環境土壤化學」,五南圖書出版公司 (2001)。
王銀波、陳尊賢、劉文徹、吳先琪、趙震慶、李國欽、王榮德,「土壤品質基準-土壤重金屬含量分級基準之建立」,行政院環保署,1994。
吳尉鈴,「硫酸根及重金屬在針鐵礦上之競爭與協同吸附平衡」,碩士論文,元智大學,中壢 (2001)。
周淑貞,「陰離子在台灣幾種主要土壤中之吸附行為及其對銅、鋅、鎘吸附特性之影響」,碩士論文,屏東科技大學,屏東 (2000)。
林浩潭、翁愫慎、李國欽,“作物中重金屬含量調查及我國國民對重金屬取食量之探討”,中國農業化學會誌, 第30卷,第4期, pp. 463-470 ( 1992 ) 。
林福全,「EDTA淋洗受重金屬污染土壤之研究」,碩士論文,台灣大學,台北 (1990)。
洪崑煌譯,「土壤化學」,Bohn, H. L.; McNeal, B. L.; O’Connor, G. A.原著,國立編譯館出版 (1997)
梁家祺、王尚禮、王明光、賴朝明,「磷酸鐵之生成」,中國農業化學會誌,第31卷,第547至556頁(1993)。
陳仁炫,「台灣強酸性土壤磷吸附特性之研究」,中國農業化學會誌,第31卷,第399至411頁(1993)。
陳武清,「酸淋洗土壤中重金屬之研究」,碩士論文,元智大學,中壢 (1999)。
游以德編譯,「環境保護」,巨流圖書公司,台北(1989)。
黃文成,「磷酸鹽對土壤中重金屬移動之影響」,碩士論文,國立中興大學,台中 (1997)。
詹武忠、楊肇政與鄭阿全,「污染防治」,高立書局,台北(1991)。
廖自基,環境中微量重金屬元素的污染危害與遷移轉化,科學出版社,北京(1989)。
趙靖豐,「以硫磺及硫酸鋁改良石灰質土壤策略下對磷行為之探討」,碩士論文,國立中興大學,台中 (2001)。
歐毓美,「土壤pH及磷肥的交感作用對強酸性土壤林吸附能力及磷有效性的影響」,碩士論文,國立台北大學,台北 (1993)。
鄧延倬,何金藍,「高效能毛細管電泳」,科學出版社(大陸),中國北京(1996)。
賴進興,「氧化鐵覆膜濾砂吸附過濾水中銅離子之研究」,博士論文,國立台灣大學,台北 (1995) 。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top