跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/11/30 02:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林敬霖
研究生(外文):Ching-Lin, Lin
論文名稱:結合核心直觀模糊C-平均分群法與約略集合於顧客資料分析
論文名稱(外文):Kernel Intuitionistic Fuzzy C-Means Clustering Algorithms with Rough Set for Customer Analysis
指導教授:林國平林國平引用關係
指導教授(外文):Kuo-Ping, Lin
口試委員:林國平洪國禎任志宏
口試委員(外文):Kuo-Ping, LinGuo-Jhen, HongJhih-Hong, Ren
口試日期:2013-06-20
學位類別:碩士
校院名稱:龍華科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:模糊C-平均分群法核心直觀模糊C-平均分群法約略集合顧客資料分析
外文關鍵詞:Fuzzy c-means clusteringKernel intuitionistic fuzzy c-meansRough setCustomer analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
模糊C-平均分群法(Fuzzy C-Means, FCM)已經廣泛的應用在多種不同的地方,本研究提出一結合核心直觀模糊C-平均分群法與約略集合(Kernel Intuitionistic Fuzzy C means With Rough Set, KIFCMRS),並將此方法應用於數位學習平台的資料分析上。主要分成兩個階段用以進行規則產生。第一階段透過KIFCM將有相關性的內容分成數組相似資料群,第二階段使用約略集合產生規則庫。最後比較不同的方法,第一階段先比較本研究提出的KIFCM和另外兩種方法(KM、FCM),第二階段則是比較本研究提出的KIFCMRS和另外兩種方法(ID3、RS)。實驗結果顯示本研究所提出之KIFCMRS優於其他被提出比較之方法。
Fuzzy C-mean (FCM) algorithms have been widely used in variety of different places. This paper proposes a kernel intuitionistic fuzzy c-means clustering algorithms with rough set (KIFCMRS), and this method is applied to the E-learning data analysis. The rule generation can be divided into two stages for effective rule generation. In the first stage, KIFCM takes advantages of kernel function and intuitionistic fuzzy sets to cluster raw data into similarity groups. In the second stage, the rough set theory is employed to generate rules with different groups. Finally, this paper compared different methods, the first stages comparative KIFCM and the other two methods (KM, FCM), the second stages compare the KIFCMRS and the other two methods (ID3, RS). Comparison with other approaches demonstrate the superior performance of the proposed KIFCMRS.
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究架構 2
第二章 文獻探討 4
2.1 數位學習 4
2.2 模糊理論與集合 5
2.3 直觀模糊集合理論 6
2.4 分群方法 9
2.4.1 K-means 10
2.4.2 Fuzzy C-means 13
2.5 約略集合 17
第三章 研究方法 30
3.1 核心直觀模糊分群法 31
3.2 使用約略集合產生分析結果 36
3.2.1 屬性化簡 36
3.2.2 最小屬性集合篩選 36
3.2.3 產生法則 37
3.2.4 計算覆蓋率 37
3.2.5 產生推薦表 37
第四章 實驗結果與討論 38
4.1 資料特性 38
4.2 分群法和分類法的測試實驗 39
4.3 實證實驗 43
4.4 T檢定 45
4.5 結果討論 47
第五章 結論 48
5.1 研究結論 48
5.2 未來方向 48
參考文獻 49
附錄 53

1.Atanassov, K. “Intuitionistic fuzzy sets,” Fuzzy Sets Systems, 20, 87-96 (1986).
2.Atanassov, K. “More on intuitionistic fuzzy sets,” Fuzzy Sets and Systems, 33, 37-46 (1989).
3.Atanassov, K. “Intuitionistic Fuzzy Sets: Theory and Applications,” Heidelberg: Physica-Verlag, (1999).
4.Banerjee, M. and Mitra, S. and Pal, S. K. “Rough fuzzy MLP: knowledge encoding and classification,” IEEE Transactions on Neural Networks, 9, 1203-1216 (1998).
5.Beynon, M. and Curry, B. and Morgan P. “Classification and rule induction using rough set theory,” Expert System, 17, 136-147 (2000).
6.Bezdek, J. C. Pattern Recognition with Fuzzy Objective Function Algorithms, New York: Plenum Press (1981).
7.Bustince , H. and Burillo, P. “Vague sets are intuitionistic fuzzy sets,” Fuzzy Sets and Systems 79, 403-405 (1996).
8.Carabaneanu, L. and Trandafir, R. and Mierlus-mazilu, I. “Trends in E-Learning,” Proceeding of MT2006, 106-111 (2006).
9.Clark, R. and Mayer, R. E-Learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. San Francisco: Jossey-Bass/Pfeiffer.(2003)
10.Fan, Y.N. and Tseng, T.L. and Chern, C.C. and Huang, C.C. “Rule induction based on an incremental rough set,” Expert Systems with Applications, 36, 11439-11450 (2009).
11.Garcia-Escudero, L. A. and Gordaliza, A.. “Robustness properties of K-means and trimmed K-means.” Journal of the American Statistical Association 94, 447, 956-969 (1999).
12.Graves, D. and Pedrycz W. “Kernel-based fuzzy clustering and fuzzy clustering: A comparative experimental study,” Fuzzy Sets and Systems 161 522–543 (2010).
13.Green, P. E. and Krieger, A. M. “Alternative approaches to cluster-based market segmentation.” Journal of the Market Research Society, 37, 221-239(1995).
14.Haberman, S. J. “Generalized Residuals for Log-Linear Models,” Proceedings of the 9th International Biometrics Conference, Boston, 104-122 (1976).
15.Hou, T. H. and Huang, C. C. “Application of fuzzy logic and variable precision rough set approach in a remote monitoring manufacturing process for diagnosis rule induction,” Journal of Intelligent Manufacturing, 15, 395-408 (2004).
16.Huang, C. C. and Tseng,T. and L. Fan, Y. N. and Hsu, C. H. “Alternative rule induction methods based on incremental object using rough set theory,” Applied Soft Computing 13 372-389 (2013).
17.Inuiguchi, M. and Miyajima, T. “Rough set based rule induction from two decision tables,” European Journal of Operational Research, 181, 1540-1553 (2007).
18.Khoo, L. P. and Tor, S.B. and Zhi, L.Y. “A rough-set-based approach for classification and rule induction,” International Journal of Advanced Manufacturing, 15, 438-444 (1999).
19.Kimble, G. A. Foundations of conditioning and learning, (1967).
20.Kuo, R. J. and Ho, L. M. and Hu, C.M. “Integration of self-organizing feature map and K-means algorithm for market segmentation,” Computers & Operations Research, 29, 1475-1493(2002).
21.Liu, X. and Wang, L. “Computing the maximum similarity bi-clusters of gene expression data,” Bioinformatics, 23, 50-56 (2007).
22.Looney, C. G. (2002), “Interactive clustering and merging with a new fuzzy expected value,” Pattern Recognition, 35, 11, 2413-2423 (2002).
23.Luo, H.C. and Zhong, Y.B. “Application and design of MEDS based on rough set data mining rule,” Fuzzy Information and Engineering 78 683-692 (2010).
24.Ma, T. and Leong, J. and Cui, M. and Tian, W. “Inducing positive and negative rules based on rough set,” Information technology Journal, 8, 1039-1043 (2009).
25.MacQueen, J. "Some Methods for classification and Analysis of Multivariate Observations", Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 281-297 (1967).
26.Mak, B. and Munakata, T. “Rule extraction from expert heuristics: A comparative study of rough sets with neural networks and ID3,” European Journal of Operational Research 136 212-229 (2002).
27.Pawlak, Z. “Rough sets” international Journal of ComPuter and infor mation science, 11, 5, 341-356 (1982).
28.Pawlak, Z. and Grzymala-Busse, J. and Slowinski, R. and Ziarko, W. “Rough sets,” Communications of the ACM 38, 89-95 (1995).
29.Pawlak, Z. and Skowron, A. "Rudiments of rough sets," Information Sciences, 177, 3-27 (2007).
30.Pawlak, Z. International Journal of Information Computer Science, 11, 341-356 (1982).
31.Pawlak, Z. Rough sets: Theoretical Aspects of Reasoning about Data, Dordrecht: Kluwer Academic Publishers, (1991).
32.Piskurich, G. M. and Piskurich, J.F. Utilizing classroom approach to prepare learners for e-learning, San Francisco: Jossey-Bass/Pfeiffer (2003).
33.Piskurich, G. M. Preparing learners for elearning. San Francisco: Jossey-Bass/Pfeiffer. (2003).
34.Quinlan, J. R. C4.5: Programs for Machine Learning, San Mateo, Calif: Morgan Kaufmann Publishers, Inc. (1993).
35.Rosenberg, M. J. E-Learning: Strategies for delivering knowledge in the digital age. New York: McGraw Hill. (2001).
36.Sanderson, P. E. “E-Learning: strategies for delivering knowledge in the digital age,” Internet and Higher Education, 5, 185-188 (2002).
37.Shen, H. and Yang, J. and Wang, S. and Liu, X. “Attribute weighted Mercer kernel based fuzzy clustering algorithm for general non-spherical datasets,” Soft Computing 10 1061-1073 (2006).
38.Shi, F. and Sun, S. and Xu, J. “Employing rough sets and association rule mining in KANSEI knowledge extraction,” Information Sciences 196 118-128(2012).
39.Tavangarian, D. and Leypold, M. and Nölting, K. and Röser, M. “Is e-learning the Solution for Individual Learning?” Journal of e-learning (2004).
40.Tou, J. T. and Gozalez, R. C. Pattern Recognition Principles, Addison-Wesley, (1974).
41.Towell, G.G. and Shavlik, J.W. “Extracting refined rules from knowledge-based neural networks,” Machine Learning 13 71-101 (1993).
42.Wong, J. T. and Chung, Y. S. "Rough set approach for accident chains exploration," Accident Analysis and Prevention, 39, 629-637 (2007).
43.Yang, M. S. “A survey of fuzzy clustering,” Mathematical and Computer Modelling, 18, 1-16 (1993).
44.Zadeh, L. A. “Fuzzy sets,” Information and Control, 8, 338-353 (1965).
45.Zhang, D. Q. and Chen, S. C. “Clustering incomplete data using kernel-based fuzzy c-means algorithm,” Neural Processing Letter, 18, 3, 155-162 (2003).
46.Zhang, G. P. “Neural networks for classification: A survey,” IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 30, 4, 451-462 (2000).
47.Ziarko, W. “Analysis of uncertain information in the framework of variable precision rough sets,” Foundations of Computing Decision Sciences, 18, 381-396 (1993).
48.Ziarko, W. “Variable precision rough set model,” Journal of Computer and System Sciences 46, 36-59 (1993).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top