跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/13 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王俊翔
研究生(外文):Chun-Hsiang Wang
論文名稱:合成具螢光輸出訊號香豆素含氮冠狀醚聚胜肽高分子並探討金屬離子誘導之超分子自組裝行為及作為汞奈米粒子合成模板 / 探索含有吡啶配基為側鏈的聚胜肽分子應用於催化反應上的潛力
論文名稱(外文):Synthesis of a New Metal-ion Responsive Azacrown Coumarin Containing Photoluminescent Polypeptide to Investigate the Metal Ions Induced Supramolecular Assembly Behaviors and the Feasibility as the Formation of Mercury Nanoparticle Template / Synthesis and Exploration of Pyridine Containing Polypeptides in the Catalytic Application
指導教授:陳昭岑
指導教授(外文):Chao-Tsen Chen
口試委員:林唯芳許梅娟蔡惠蓮
口試委員(外文):Wei-Fang SuMei-Jywan SyuHui-Lien Tsai
口試日期:2019-03-22
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:192
中文關鍵詞:超分子自組裝聚胜肽高分子活化氨酯N-羧酸內酸酐汞奈米粒子貝克曼重排反應碳-氫鍵活化反應
DOI:10.6342/NTU201900673
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來透過非共價相互作用操控超分子的形成,並模擬生物功能的超分子受到越來越多的關注。使用較強且具方向性相互作用力如金屬-配體配位作用力,可以組裝出具有選擇性、簡單、可逆的聚合物。然而,能即時監測超分子組裝仍具有相當大的挑戰性。因此本研究合成了香豆素含氮冠狀聚胜肽高分子ACCP,藉由螢光變化並結合電子顯微結果來監控聚胜肽高分子自組裝的形成。此聚胜肽高分子是經由活化氨脂 (activated urethane) 衍生物以原位 (in situ) 生成N-羧酸內酸酐 (N-carboxyanhydride) 後開環聚合而成。此合成策略可以避免使用光氣,或具有毒性的光氣衍生物來進行聚合。ACCP與金屬離子錯合物結構的改變可以利用螢光進行即時的監測,當ACCP溶於乙腈時,與銅離子形成錯合物以藍色螢光放射。然而,於三氯甲烷溶液中則對於鈉離子與汞離子有選擇性,此時ACCP中香豆素相互堆積並以激發雙體的黃色螢光放射。此外,ACCP可促進汞奈米粒子於原位生成,於穿透式顯微鏡觀察其大小約為10 nm的實心奈米球體。將汞奈米粒子進一步的應用於貝克曼重排反應,初步結果顯示無法有效催化反應。推測是汞奈米粒子皆包覆於ACCP的保護層內,無法與受質接觸,往後仍需進一步將反應條件最適化,開拓應用端的發展。
啟發於ACCP可誘導汞奈米粒子生成的實驗結果,發展以聚離胺酸作為骨架之聚合物,修飾可與鈀金屬配位的吡啶配基。期望吡啶配基與金屬配位後,利用聚胜肽的立體中心,作為催化反應立體選擇性的來源,同時保有聚合物可重複回收再使用的特性,減少金屬催化劑的使用量,降低對環境的污染。單體因具有吡啶配基,若以原本合成ACCP單體的方法會造成反應所使用的鈀金屬殘留。為了避免此困擾,因此改變合成路徑,合成單體PPy-Lys、MPy-Lys、OPy-Lys與Y-Lys。藉由聚合反應條件的最適化後,發現將單體濃度調控於0.5 M與使用HMPA作為聚合反應之溶劑,可成功合成聚合物PPy-PLL與MPy-PLL。PPy-PLL進一步的應用於丙胺酸之碳-氫活化反應,根據實驗結果無法提升產率,且不具有光學選擇性,未來仍需重新設計配基達到立體選擇的目的。
Forming supramolecular assemblies and controlling their behaviors via non-covalent interactions mimicking multi-functional materials have drawn much attention. Utilization of strong and directional interactions such as metal-ligand coordination can achieve spontaneous formation of selective, simple, and reversible supramolecular assemblies. However, it still remains a great challenge to monitor the underlying supramolecular assembly temporally. Herein, a new metal ion-responsive azacrown coumarin-conjugated photoluminescent polypeptide (ACCP) was designed and synthesized via in situ generated N-carboxyanhydride from the corresponding activated urethane monomer to exploit the metal ion-induced supramolecular assembly behaviors. After screening with various metal ions in either acetonitrile or chloroform, the results showed that ACCP˙Cu2+ exhibited blue emission in acetonitrile. However, ACCP dissolved in chloroform displayed strong fluorescence intensity enhancement only in the presence of either Hg2+ or Na+. In the combination of the absorption and the fluorescence profile, the morphologies of ACCP can be deduced. Notably, ACCP can also induce the formation of mercury nanoparticle. The morphologies of the mercury nanoparticle was 10 nm solid nanosphere stabilized by ACCP which was confirmed by transmission electron microscope. ACCP induced mercury nanoparticle was further used as the catalyst in Beckmann rearrangement. The preliminary results show that ACCP induced mercury nanoparticle was unable to catalyze the reaction due to the fact that the mercury nanoparticle was encapsulated compactly in the interior of the polymersome, rendering the mercury nanoparticles not accessible to the substrates. Further optimization of the reaction condition is required.
Inspired by the ACCP induced mercury nanoparticle, polypeptide containing the pyridine ligands were designed and synthesized. Taking the advantage of the chirality in the polypeptide and the immobilization of the palladium via pyridine ligands, it is hoped to achieve good stereoselectivity in the synthesis of unnatural amino acid and the recover the palldium. A new synthetic strategy was developed to synthesize polymerizable monomer with the pyridine ligand to mitigate the contamination of the palladium needed to used in the original strategy. Based on this strategy, PPy-Lys, MPy-Lys, OPy-Lys, and Y-Lys were successfully synthesized, PPy-PLL and MPy-PLL were obtained in good yield with molecular weight around 8 kDa. PPy-PLL was further used as a ligand to C-H activation. The results revealed that PPy-PLL was unable to improve either yield or enantioselectivity. New ligands are required to achieve the C-H activation and high enantioselectivity.
目錄 I
圖目錄 IV
表目錄 XVII
簡稱用語對照表 XIX
中文摘要 XXI
Abstract XXIII
第一章、緒論 1
1.1 超分子聚合物之介紹 1
1.1.1 以氫鍵構築的超分子聚合物 2
1.1.2 金屬-配基作用力建構超分子聚合物 4
1.1.3 利用正交的主客相互作用力建構超分子聚合物 9
1.2 含有螢光訊號輸出的超分子自組裝行為 14
1.3 實驗室相關研究 21
1.4 聚胜肽合成方法整理 31
1.4.1合成NCA的方法整理 31
1.4.2. Endo教授與其研究團隊發展之NCA合成方法 34
1.5 實驗動機與分子設計 45
第二章、含氮冠狀醚香豆素聚胜肽 (ACCP) 之合成 46
2.1 含氮冠狀醚香豆素聚胜肽之單體1a逆合成分析 46
2.2 含氮冠狀醚香豆素聚胜肽之單體1a合成步驟 48
2.3 單體1c的合成與聚合反應 55
2.4含氮冠狀醚香豆素聚胜肽 (ACCP) 的合成與分子量鑑定 61
第三章、單體、ACCP與金屬離子錯合物探討 65
3.1 單體2a的金屬離子選擇性 65
3.2 單體2a與特定金屬離子於三氯甲烷或乙腈下進行等溫滴定實驗 66
3.3 單體1a的金屬離子選擇性 73
3.4 ACCP的型態鑑定 75
3.5 ACCP的金屬離子選擇性 80
3.6 ACCP與特定金屬離子於三氯甲烷或乙腈下進行等溫滴定實驗 82
3.6.1 ACCP與汞離子之等溫滴定實驗 82
3.6.2 ACCP與銅離子之等溫滴定實驗 86
3.6.3 ACCP與鈉離子之等溫滴定實驗 89
3.6.4 ACCP與鍶離子之等溫滴定實驗 92
3.7 ACCP˙Hg2+錯合物型態鑑定 95
3.8 錯合物ACCP˙Na+型態鑑定 99
3.9 單體2a與質子之等溫滴定實驗 100
3.10 ACCP與質子之等溫滴定實驗 101
3.11 錯合物ACCP˙H+之型態鑑定 103
3.12 結論 104
第四章、ACCP作為汞奈米粒子合成模板 105
4.1 聚合物誘導奈米粒子之合成 105
4.1.1 以聚苯乙烯製備奈米粒子與其於催化反應上的應用 106
4.1.2 以聚乙烯醇製備奈米粒子與其於催化反應上的應用 109
4.1.3 其他聚合物製備奈米粒子與其於催化反應上的應用 111
4.2 汞奈米粒子的製備及其應用 115
4.3 汞奈米粒子應用於貝克曼催化反應 121
4.4 錯合物2a˙Hg2+之型態鑑定 123
4.5 汞奈米粒子之元素態鑑定 123
4.6 錯合物ACCP˙Hg2+應用於貝克曼重排反應 124
4.7 結論 126
第五章、聚胜肽應用於碳-氫活化反應 127
5.1 碳-氫活化反應 127
5.2 實驗動機與分子設計 136
5.3 單體PPy-Lys、MPy-Lys、OPy-Lys與Y-Lys之逆合成分析 137
5.4 單體PPy-Lys、MPy-Lys、OPy-Lys與Y-Lys之合成步驟 138
5.5 替代路徑之單體PPy-Lys、MPy-Lys、OPy-Lys與Y-Lys逆合成分析 141
5.6 替代路徑之單體PPy-Lys、MPy-Lys、OPy-Lys與Y-Lys合成步驟 142
5.7 聚合反應條件之最適化與聚合物分子量鑑定 147
5.8 碳-氫活化反應之受質合成 149
5.9 聚合物PPy-PLL於碳-氫催化反應之應用 151
5.10 結論 153
實驗部分 154
一、一般敘述 154
二、合成步驟與光譜數據 158
參考文獻 171
附錄 180
(1) Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813-817.
(2) Haag, R. Angew. Chem. Int. Ed. 2004, 43, 278-282.
(3) Yu, L.; Wang, Z.; Wu, J.; Tu, S.; Ding, K. Angew. Chem. Int. Ed. 2010, 49, 3627-3630.
(4) Lombardo, D.; Kiselev, M. A.; Magazu; , S.; Calandra, P. Adv. Condens. Matter Phys. 2015, 2015, 22.
(5) Fouquey, C.; Lehn, J.-M.; Levelut, A.-M. Adv. Mater. 1990, 2, 254-257.
(6) Sijbesma, R. P.; Beijer, F. H.; Brunsveld, L.; Folmer, B. J. B.; Hirschberg, J. H. K. K.; Lange, R. F. M.; Lowe, J. K. L.; Meijer, E. W. Science 1997, 278, 1601-1604.
(7) Berl, V.; Schmutz, M.; Krische, M. J.; Khoury, R. G.; Lehn, J.-M. Chem. Eur. J. 2002, 8, 1227-1244.
(8) Kolomiets, E.; Buhler, E.; Candau, S. J.; Lehn, J. M. Macromolecules 2006, 39, 1173-1181.
(9) Yang, L.; Tan, X.; Wang, Z.; Zhang, X. Chem. Rev. 2015, 115, 7196-7239.
(10)de Greef, T. F. A.; Meijer, E. W. Nature 2008, 453, 171.
(11)Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071-4098.
(12)Dobrawa, R.; Lysetska, M.; Ballester, P.; Grüne, M.; Würthner, F. Macromolecules 2005, 38, 1315-1325.
(13)Aronsson, C.; Selegård, R.; Aili, D. Macromolecules 2016, 49, 6997-7003.
(14)Sawada, T.; Matsumoto, A.; Fujita, M. Angew. Chem. Int. Ed. 2014, 53, 7228-7232.
(15)Sawada, T.; Yamagami, M.; Ohara, K.; Yamaguchi, K.; Fujita, M. Angew. Chem. Int. Ed. 2016, 55, 4519-4522.
(16)Solà, J.; Bolte, M.; Alfonso, I. CrystEngComm 2016, 18, 3793-3798.
(17)Tavenor, N. A.; Murnin, M. J.; Horne, W. S. J. Am. Chem. Soc. 2017, 139, 2212-2215.
(18)Zaccai, N. R.; Chi, B.; Thomson, A. R.; Boyle, A. L.; Bartlett, G. J.; Bruning, M.; Linden, N.; Sessions, R. B.; Booth, P. J.; Brady, R. L.; Woolfson, D. N. Nat. Chem. Biol. 2011, 7, 935.
(19)Yan, X.; Cook, T. R.; Pollock, J. B.; Wei, P.; Zhang, Y.; Yu, Y.; Huang, F.; Stang, P. J. J. Am. Chem. Soc. 2014, 136, 4460-4463.
(20)Nowick, J. S. Acc. Chem. Res. 2008, 41, 1319-1330.
(21)Bowerman, C. J.; Liyanage, W.; Federation, A. J.; Nilsson, B. L. Biomacromolecules 2011, 12, 2735-2745.
(22)Jana, P.; Ehlers, M.; Zellermann, E.; Samanta, K.; Schmuck, C. Angew. Chem. Int. Ed. 2016, 55, 15287-15291.
(23)Xu, M.; Liu, L.; Yan, Q. Angew. Chem. Int. Ed. 2018, 57, 5029-5032.
(24)Ji, X.; Wu, R.-T.; Long, L.; Guo, C.; Khashab, N. M.; Huang, F.; Sessler, J. L. J. Am. Chem. Soc. 2018, 140, 2777-2780.
(25)Demchenko, A. P. J. Fluoresc. 2010, 20, 1099-1128.
(26)Barrett, E. S.; Dale, T. J.; Rebek, J. J. Am. Chem. Soc. 2007, 129, 3818-3819.
(27)Berney, C.; Danuser, G. Biophys. J. 2003, 84, 3992-4010.
(28)Barrett, E. S.; Dale, T. J.; Rebek, J. J. Am. Chem. Soc. 2008, 130, 2344-2350.
(29)Huang, C.-B.; Xu, L.; Zhu, J.-L.; Wang, Y.-X.; Sun, B.; Li, X.; Yang, H.-B. J. Am. Chem. Soc. 2017, 139, 9459-9462.
(30)Spenst, P.; Young, R. M.; Phelan, B. T.; Keller, M.; Dostál, J.; Brixner, T.; Wasielewski, M. R.; Würthner, F. J. Am. Chem. Soc. 2017, 139, 2014-2021.
(31)Li, J.; Du, X.; Hashim, S.; Shy, A.; Xu, B. J. Am. Chem. Soc. 2017, 139, 71-74.
(32)Lu, C.; Zhang, M.; Tang, D.; Yan, X.; Zhang, Z.; Zhou, Z.; Song, B.; Wang, H.; Li, X.; Yin, S.; Sepehrpour, H.; Stang, P. J. J. Am. Chem. Soc. 2018, 140, 7674-7680.
(33)Chen, C.-T.; Huang, W.-P. J. Am. Chem. Soc. 2002, 124, 6246-6247.
(34)游廷彬, 國立臺灣大學理學院化學所碩士論文, 台北市, 2004.
(35)黃婉珮, 國立臺灣大學理學院化學所碩士論文, 台北市, 2002.
(36)張肇哲, 國立臺灣大學理學院化學所碩士論文, 台北市, 2005.
(37)張維新, 國立臺灣大學理學院化學所碩士論文, 台北市, 2003.
(38)林喻偵, 國立臺灣大學理學院化學所碩士論文, 台北市, 2004.
(39)Lin, Y.-C.; Chen, C.-T. Chem. Eur. J. 2013, 19, 2531-2538.
(40)林喻偵, 國立臺灣大學理學院化學所博士論文, 台北市, 2011.
(41)Merrifield, R. B. J. Am. Chem. Soc. 1963, 85, 2149-2154.
(42)Curtius, T.; Hochschwender, K.; Meier, H.; Lehmann, W.; Benckiser, A.; Schenck, M.; Wirbatz, W.; Gaier, J.; Mühlhäusser, W. J. Prakt. Chem. 1930, 125, 211-302.
(43)Farthing, A. C.; Reynolds, R. J. W. Nature 1950, 165, 647.
(44)Katakai, R.; Iizuka, Y. J. Org. Chem. 1985, 50, 715-716.
(45)Wilder, R.; Mobashery, S. J. Org. Chem. 1992, 57, 2755-2756.
(46)Mobashery, S.; Johnston, M. J. Org. Chem. 1985, 50, 2200-2202.
(47)Hurd, C. D.; Buess, C. M. J. Am. Chem. Soc. 1951, 73, 2409-2412.
(48)Collet, H.; Bied, C.; Mion, L.; Taillades, J.; Commeyras, A. Tetrahedron Lett. 1996, 37, 9043-9046.
(49)Ehler, K. W.; Orgel, L. E. Biochim. Biophys. Acta 1976, 434, 233-243.
(50)Fujita, Y.; Koga, K.; Kim, H.-K.; Wang, X.-S.; Sudo, A.; Nishida, H.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5365-5370.
(51)Kamei, Y.; Sudo, A.; Nishida, H.; Kikukawa, K.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2525-2535.
(52)Kamei, Y.; Nagai, A.; Sudo, A.; Nishida, H.; Kikukawa, K.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2649-2657.
(53)Kamei, Y.; Sudo, A.; Endo, T. Macromolecules 2008, 41, 7913-7919.
(54)Koga, K.; Sudo, A.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 4351-4355.
(55)Yamada, S.; Koga, K.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2527-2532.
(56)Yamada, S.; Koga, K.; Sudo, A.; Goto, M.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 3726-3731.
(57)Yamada, S.; Sudo, A.; Goto, M.; Endo, T. RSC Adv. 2014, 4, 29890-29896.
(58)Yamada, S.; Ikkyu, K.; Iso, K.; Goto, M.; Endo, T. Polym. Chem. 2015, 6, 1838-1845.
(59)Yamada, S.; Goto, M.; Endo, T. Macromol. Chem. Phys. 2015, 216, 1348-1354.
(60)Shiraki, Y.; Yamada, S.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1674-1679.
(61)Huang, J.; Heise, A. Chem. Soc. Rev. 2013, 42, 7373-7390.
(62)Yashima, E.; Maeda, K.; Iida, H.; Furusho, Y.; Nagai, K. Chem. Rev. 2009, 109, 6102-6211.
(63)黃聖尹, 國立臺灣大學理學院化學所碩士論文, 台北市, 2013.
(64)Hirayama, T.; Iyoshi, S.; Taki, M.; Maeda, Y.; Yamamoto, Y. Org. Biomol. Chem. 2007, 5, 2040-2045.
(65)Satpati, A. K.; Kumbhakar, M.; Nath, S.; Pal, H. Photochem. Photobiol. 2009, 85, 119-129.
(66)Maity, B.; Chatterjee, A.; Seth, D. Photochem. Photobiol. 2014, 90, 734-746.
(67)Connors, K. Binding constants; John Wiley & Sons, Inc.: New York, 1987.
(68)Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3-40.
(69)Byler, D. M.; Susi, H. Biopolymers 1986, 25, 469-487.
(70)Lippert, J. L.; Tyminski, D.; Desmeules, P. J. J. Am. Chem. Soc. 1976, 98, 7075-7080.
(71)Greenfield, N. J. Nat. Protoc. 2006, 1, 2876-2890.
(72)Person, R. V.; Monde, K.; Humpf, H.-u.; Berova, N.; Nakanishi, K. Chirality 1995, 7, 128-135.
(73)Biancalana, M.; Koide, S. Biochim. Biophys. Acta 2010, 1804, 1405-1412.
(74)Xu, S.; Li, Q.; Xiang, J.; Yang, Q.; Sun, H.; Guan, A.; Wang, L.; Liu, Y.; Yu, L.; Shi, Y.; Chen, H.; Tang, Y. Sci. Rep. 2016, 6, 24793.
(75)Xue, C.; Lin, T. Y.; Chang, D.; Guo, Z. Royal Soc. Open Sci. 2017, 4, 160696.
(76)Shannon, R. Acat Crystallogr. A 1976, 32, 751-767.
(77)Sreya Roy, C.; Partha Sarathi, R.; Swapan Kumar, B. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2017, 8, 025002.
(78)Katz, E.; Willner, I. Angew. Chem. Int. Ed. 2004, 43, 6042-6108.
(79)Edwards, P. P.; Thomas, J. M. Angew. Chem. Int. Ed. 2007, 46, 5480-5486.
(80)Ramesh, G. V.; Porel, S.; Radhakrishnan, T. P. Chem. Soc. Rev. 2009, 38, 2646-2656.
(81)Mbhele, Z. H.; Salemane, M. G.; van Sittert, C. G. C. E.; Nedeljković, J. M.; Djoković, V.; Luyt, A. S. Chem. Mater. 2003, 15, 5019-5024.
(82)Arceo, A.; Meli, L.; Green, P. F. Nano Lett. 2008, 8, 2271-2276.
(83)Mendoza, C.; Pietsch, T.; Gutmann, J. S.; Jehnichen, D.; Gindy, N.; Fahmi, A. Macromolecules 2009, 42, 1203-1211.
(84)Caseri, W. R. In Nanocomposites: In Situ Synthesis of Polymer-Embedded Nanostructures; Carotenuto, L. N. a. G., Ed.; John Wiley & Sons, Inc.: Hoboken, New Jersey, 2013, p 45-72.
(85)Kobayashi, S.; Akiyama, R. Chem. Commun. 2003, 449-460.
(86)Jyothi, N. V. N.; Prasanna, P. M.; Sakarkar, S. N.; Prabha, K. S.; Ramaiah, P. S.; Srawan, G. Y. J. Microencapsulation 2010, 27, 187-197.
(87)Akiyama, R.; Kobayashi, S. Angew. Chem. Int. Ed. 2001, 40, 3469-3471.
(88)Miyamura, H.; Matsubara, R.; Miyazaki, Y.; Kobayashi, S. Angew. Chem. Int. Ed. 2007, 46, 4151-4154.
(89)Rao, V. K.; Radhakrishnan, T. P. J. Mater. Chem. A 2013, 1, 13612-13618.
(90)Madhuri, U. D.; Rao, V. K.; Hariprasad, E.; Radhakrishnan, T. P. Mater. Res. Express 2016, 3, 045018.
(91)Oyamada, H.; Akiyama, R.; Hagio, H.; Naito, T.; Kobayashi, S. Chem. Commun. 2006, 4297-4299.
(92)Miyamura, H.; Suzuki, A.; Yasukawa, T.; Kobayashi, S. J. Am. Chem. Soc. 2018, 140, 11325-11334.
(93)Su, J.; Xie, C.; Chen, C.; Yu, Y.; Kennedy, G.; Somorjai, G. A.; Yang, P. J. Am. Chem. Soc. 2016, 138, 11568-11574.
(94)Jagadeesan, D. Appl. Catal., A 2016, 511, 59-77.
(95)Li, Z.; Yu, R.; Huang, J.; Shi, Y.; Zhang, D.; Zhong, X.; Wang, D.; Wu, Y.; Li, Y. Nat. Commun. 2015, 6, 8248.
(96)Zečević, J.; Vanbutsele, G.; de Jong, K. P.; Martens, J. A. Nature 2015, 528, 245-248.
(97)Zhang, J.; Wang, L.; Shao, Y.; Wang, Y.; Gates, B. C.; Xiao, F.-S. Angew. Chem. Int. Ed. 2017, 56, 9747-9751.
(98)Cho, H. J.; Kim, D.; Li, J.; Su, D.; Xu, B. J. Am. Chem. Soc. 2018, 140, 13514-13520.
(99)Renzoni, A.; Zino, F.; Franchi, E. Environ. Res. 1998, 77, 68-72.
(100) Malm, O. Environ. Res. 1998, 77, 73-78.
(101) Harris, H. H.; Pickering, I. J.; George, G. N. Science 2003, 301, 1203-1203.
(102) Dórea, J. G. Sci. Total Environ. 2008, 400, 93-114.
(103) Mahbub, K. R.; Bahar, M. M.; Labbate, M.; Krishnan, K.; Andrews, S.; Naidu, R.; Megharaj, M. Appl. Microbiol. Biotechnol. 2017, 101, 963-976.
(104) Zhang, F.-S.; Nriagu, J. O.; Itoh, H. Water Res. 2005, 39, 389-395.
(105) Huang, C. P.; Blankenship, D. W. Water Res. 1984, 18, 37-46.
(106) Blanchard, G.; Maunaye, M.; Martin, G. Water Res. 1984, 18, 1501-1507.
(107) Benhammou, A.; Yaacoubi, A.; Nibou, L.; Tanouti, B. J. Colloid Interface Sci. 2005, 282, 320-326.
(108) Chiarle, S.; Ratto, M.; Rovatti, M. Water Res. 2000, 34, 2971-2978.
(109) Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Liu, J.; Kemner, K. M. Science 1997, 276, 923-926.
(110)Sangvanich, T.; Morry, J.; Fox, C.; Ngamcherdtrakul, W.; Goodyear, S.; Castro, D.; Fryxell, G. E.; Addleman, R. S.; Summers, A. O.; Yantasee, W. ACS Appl. Mater. Inter. 2014, 6, 5483-5493.
(111) Wang, J.; Deng, B.; Wang, X.; Zheng, J. Enviorn. Eng. Sci. 2009, 26, 1693-1699.
(112) Li, B.; Zhang, Y.; Ma, D.; Shi, Z.; Ma, S. Nat. Commun. 2014, 5, 5537.
(113) Ben, T.; Ren, H.; Ma, S.; Cao, D.; Lan, J.; Jing, X.; Wang, W.; Xu, J.; Deng, F.; Simmons, J. M.; Qiu, S.; Zhu, G. Angew. Chem. Int. Ed. 2009, 48, 9457-9460.
(114) Kaur, S.; Kumar, M.; Bhalla, V. Chem. Commun. 2015, 51, 4085-4088.
(115) Ramesh, G. V.; Prasad, M. D.; Radhakrishnan, T. P. Chem. Mater. 2011, 23, 5231-5236.
(116) Katsikas, L.; Gutiérrez, M.; Henglein, A. The Journal of Physical Chemistry 1996, 100, 11203-11206.
(117) Henglein, A.; Brancewicz, C. Chem. Mater. 1997, 9, 2164-2167.
(118) Pol, S. V.; Pol, V. G.; Gedanken, A. Chem. Eur. J. 2004, 10, 4467-4473.
(119) Gedanken, A.; Luvchik, E.; Calderon‐Moreno, J. M.; Veglio, N.; Tamarit, J. L. I. Adv. Mater. 2008, 20, 1000-1002.
(120) Majumder, S.; Priyadarshini, M.; Subudhi, U.; Chainy, G. B. N.; Varma, S. Appl. Surf. Sci. 2009, 256, 438-442.
(121) Majumder, S.; Priyadarshini, M.; Subudhi, U.; Umananda, M.; Chainy, G. B. N.; Satyam, P. V.; Varma, S. Appl. Phys. Lett. 2009, 94, 073110.
(122) Sinha, A.; Khare, S. K. Bioresour. Technol. 2011, 102, 4281-4284.
(123) Tagar, Z. A.; Sirajuddin; Memon, N.; Kalhoro, M. S.; O’Brien, P.; Malik, M. A.; Abro, M. I.; Hassan, S. S.; Kalwar, N. H.; Junejo, Y. Sensor Actuat B: Chem. 2012, 173, 745-751.
(124) Ramalingan, C.; Park, Y.-T. J. Org. Chem. 2007, 72, 4536-4538.
(125) Hutson, N. D.; Attwood, B. C.; Scheckel, K. G. Environ. Sci. Technol. 2007, 41, 1747-1752.
(126) Glaser, C. Ber. Dtsch. Chem. Ges. 1869, 2, 422-424.
(127) Ullmann, F.; Bielecki, J. Ber. Dtsch. Chem. Ges. 1901, 34, 2174-2185.
(128) Bag, S.; Jayarajan, R.; Dutta, U.; Chowdhury, R.; Mondal, R.; Maiti, D. Angew. Chem. Int. Ed. 2017, 56, 12538-12542.
(129) Bag, S.; Jayarajan, R.; Mondal, R.; Maiti, D. Angew. Chem. Int. Ed. 2017, 56, 3182-3186.
(130) Tang, R.-Y.; Li, G.; Yu, J.-Q. Nature 2014, 507, 215.
(131) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2009, 48, 5094-5115.
(132) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882-4886.
(133) Tran, L. D.; Daugulis, O. Angew. Chem. Int. Ed. 2012, 51, 5188-5191.
(134) He, J.; Li, S.; Deng, Y.; Fu, H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Science 2014, 343, 1216-1220.
(135) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301-312.
(136) Kobayashi, S.; Miyamura, H. Aldrichimica Acta 2014, 45, 3-19.
(137) Lee, L.-C.; He, J.; Yu, J.-Q.; Jones, C. W. ACS Catalysis 2016, 6, 5245-5250.
(138) Hoyt, C. B.; Lee, L.-C.; He, J.; Yu, J.-Q.; Jones, C. W. Adv. Synth. Catal. 2017, 359, 3611-3617.
(139) Wasa, M.; Chan, K. S. L.; Zhang, X.-G.; He, J.; Miura, M.; Yu, J.-Q. J. Am. Chem. Soc. 2012, 134, 18570-18572.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top