跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖隆德
研究生(外文):Long-De Liao
論文名稱:具有寬能隙元件之數位交錯式功率因數修正器的研製
論文名稱(外文):Design and Implementation of Digital Controlled Interleaved Power Factor Corrector with Wide Bandgap Devices
指導教授:賴炎生
口試委員:葉家安黃明熙賴炎生
口試日期:2017-07-08
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:電機工程系電力電子產業研發碩士專班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:99
中文關鍵詞:氮化鎵寬能隙元件交錯式功率因數修正器
外文關鍵詞:gallium nitridewide bandgap devicesInterleaved power factor corrector
相關次數:
  • 被引用被引用:2
  • 點閱點閱:450
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研製一具有寬能隙功率元件之交錯式功率因數修正器,與傳統矽功率元件相比,氮化鎵功率元件具有高電子遷移率、高飽和電子速度、高崩潰電場,低導通電阻等優點,可提高切換頻率且不增加過多的切換損失,以達到減小磁性元件體積、提高功率密度的效果。
本文所研製的交錯式功率因數修正器的規格包含:輸出功率750 W,輸入電壓115 Vac/60 Hz與230 Vac/60 Hz,輸出電壓400 Vdc,切換頻率300 kHz。經實驗結果證實,在滿載情況下,當輸入電壓為115 Vac時效率可達93%以上,功率因數可達0.996;當輸入電壓為230 Vac時效率可達95%以上,功率因數可達0.94以上。
The objective of this thesis is to design and implement an interleaved power factor corrector with wide bandgap devices. Compared with traditional silicon power devices, the gallium nitride power devices have the advantages of high electron mobility, high saturable velocity, high electrical field strength and low on-resistance. The switching frequency can be increased without increasing the excessive switching loss in order to reduce the magnetic components size and increase power density.
The design specifications include: output power rating of 750 W, input AC voltage 115 Vac and 230 Vac, output DC voltage of 400 Vdc and switching frequency of 300 kHz. Experimental results show that the efficiency is up to 93%, power factor is greater than 0.996 in low line voltage and full load condition. The efficiency is up to 95%, power factor is greater than 0.94 in high line voltage and full load condition.
摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 內容大綱 6
第二章 功率因數修正器控制原理 7
2.1 功率因數定義 7
2.2 功率因數修正器電路 10
2.3 主動式功率因數修正器控制 12
2.4 交錯式功率因數修正器之動作原理 14
第三章 數位控制器分析與設計 22
3.1 昇壓型轉換器小訊號推導 22
3.2 數位控制器分析與設計 29
3.3 均流控制法則之分析 38
3.4 電路元件設計 40
3.4.1 電感設計 40
3.4.2 輸出電容設計 45
3.4.3 功率元件選用 46
3.4.4 電感電流回授電路設計 47
3.4.5 閘極負壓驅動電路設計 48
3.4.6 PCB Layout注意事項 49
3.5 程式設計 50
3.5.1 高解析度脈波寬度調變 57
第四章 模擬與實驗結果 61
4.1 交錯式功率因數修正器模擬 61
4.2 實驗平台 66
4.3 實測波形 67
4.4 實驗數據 85
第五章 結論與未來展望 94
5.1 結論 94
5.2 未來展望 94
參考文獻 95
附錄 99
[1] "Engergy Star," [Online]. Available: https://www.energystar.gov/.
[2] "80 PLUS Certified Power Supplies and Manufacturers," [Online]. Available: http://www.plugloadsolutions.com/80pluspowersupplies.aspx.
[3] "Electromagnetic compatibility (EMC) - Part 3 - 2: Limits - Limits for harmonic current emissions (equipment input curren <= 16 A per phase)," in IEC 61000-3-2, 2014.
[4] 蘇裕翔,「GaN高頻元件應用領域或發展現況」,光連雙月刊,第48期,2003年11月。
[5] J. Strydom, D. Reusch, S. Colino, and A. Nakata, " Using enhancement mode GaN-on-Silicon power FETs (eGaN® FETs)," Efficient Power Conversion(EPC), 2014.
[6] 顏誠廷,「碳化矽功率半導體元件」,功率電子專利,第20卷,第1期,2014年6月。
[7] B. Ozpineci, L. M. Tolbert, S. K. Islam, and M. Chinthavali, "Comparison of wide bandgap semiconductor for power applications, " Jan. 2003.
[8] 黃智方,張庭輔,「氮化鎵功率元件簡介」,功率電子專利,第20卷,第1期,2014年6月。
[9] X. Huang, Z. Liu, Q. Li, and F. C. Lee, "Evaluation and application of 600 V GaN HEMT in cascode structure," Proc of the IEEE TPEL, pp. 2453-2461, May. 2014.
[10] 王勇智,高功率氮化鎵異質結構場效電晶體之設計與製作,國立交通大學電子工程系碩士學位論文,民國九十六年六月。
[11] S. L. Colino, and R. A. Beach, "Fundamentals of Gallium Nitride power transistors," Efficient Power Conversion(EPC), 2011.
[12] Z. Liu, X. Huang, Fred C. Lee, and Qiang Li, " Package parasitic inductance extraction and simulation model development for the high-voltage cascode GaN HEMT," Proc of the IEEE TPEL, pp. 1977-1985, 2014.
[13] A. Lidow, and J. Strydom, " eGaN® FET drivers and layout considerations," Efficient Power Conversion(EPC), 2011.
[14] S. Bolte, N. Fröhleke, and J. Böcker, " Efficiency optimization for a power factor correction (PFC) rectifier with gallium nitride transistor," Proc. of the IEEE WiPDA, pp. 220-223, 2015.
[15] Z. Huang, F. Recht, and Y. Wu, Printed circuit board layout and probing for GaN power switches, Transphorm Inc.
[16] GaN Systems, How to drive GaN enhancement mode HEMT, Mar. 2016.
[17] Datasheet, TPH3205WSB, Transphorm, Feb. 2017.
[18] Datasheet, GS66508B, GaN System, 2017.
[19] J. P. M. Figueiredo, F. L. Tofoli, and B. L. A. Silva, "A review of single-phase PFC topologies based on the boost converter," Proc of the IEEE INDUSCON, Nov. 2010.
[20] N. B. Nam, N. A. Dung, Y. C. Liu, Y. C. Hsieh, H. J. Chiu, M. Hojo, and K. Yamanaka, " Design and implementation of digital controlled boost PFC converter under boundary conduction mode," Proc. of the IFEEC, pp. 1114-1119, 2017.
[21] S. Choudhury, and J. P. Noon, " A DSP based dgitally controlled interleaved PFC converter," Proc. of the IEEE APEC, pp. 648-654, 2008.
[22] P. P. Hieu, N. D. Thuc, Y. H. Liu, Y. C. Hsieh, H. J. Chiu, M. Hojo, and K. Yamanaka, DSP based digital control techniques for interleaved boost PFC converter," Proc. of the IFEEC, pp. 456-459, 2017.
[23] Y. S. Lai, and S. J. Lu, "Multi-inverters control technoque with current sharing control for back-up power system applications," Proc of the IEEE ICRERA, pp. 1-7, 2012.
[24] K. H. Chou, T. J. Liang, K. H. Chen, and J. S. Lee, " Design and implementation of an interleaved BCM boost PFC control IC," Proc of the IEEE IPEC, pp. 3346-3351, 2014.
[25] K. M. Ho, C. A. Yeh, and Y. S. Lai, " Novel digital-controlled transition current-mode control and duty compensation techniques for interleaved power factor corrector," Proc of the IEEE TPEL, pp. 3085-3094, 2010.
[26] J. Jang, S. K. Pidaparthy, S. Lee, and B. Choi " Performance of an interleaved boundary conduction mode boost PFC converter with wide band-gap switching devices," Proc. of the IEEE IFEEC, 2012.
[27] S. Mao, R. Ramabhadran, J. Popovic, and J. A. Ferreira " Investigation of CCM boost PFC converter efficiency improvement with 600V wide band-gap power semiconductor devices," Proc. of the IEEE ECCE, pp. 388-395, 2015.
[28] Y. C. Niu, C. J. Yang, Y. M. Chen, and Y. R. Chang, "Design of boost power factor corrector with GaN HEMT devices," Proc. of the IFEEC, pp. 1270-1274, 2017.
[29] 宋自恆,林慶仁,「功率因數修正電路之原理與常用元件規格」,新電子科技雜誌,第217期,2004年4月。
[30] Power factor correction (PFC) handbook, ON Semiconductor, 2014, pp. 70.
[31] J. Ware, Power factor correction (PFC), IEE Wiring Matters, 2006.
[32] Cntrol Tronics , Power factor correction (PFC) application notes, Cooper Bussmann, 2010.
[33] Vicor Corporation , Active PFC for electronic power supplies.
[34] 蘇冠哲,數位控制之交錯型功率因數修正器的研製,國立臺北科技大學電機工程系碩士學位論文,民國一百年六月。
[35] R. Poley, A. Shirsavar, Digital peak current mode control with slope compensation using the TMS320F2803x, Texas Instruments, Apr. 2012.
[36] L. Dixon, Average current mode control of switching power supplies, Unitrode Corporation, pp. 356-369.
[37] N. Subashini, V. Dharmaling, and M. Vetriselvan, "Active power factor correction using hysteresis current control of boost converter," Asian Network for Scientific Information, pp. 1648-1652, 2014.
[38] Y. S. Lai, K. M. Ho, and B. Y. Chen, "Bandwidth-based analysis and controller design of power factor corrector for universal applications," Proc. of the IEEE ICIT, pp. 626-631, 2012.
[39] P. C. Todd, UC3854 controlled power factor correction circuit design application note, Texas Instruments.
[40] 陳韋諺,具有均流控制之數位交錯式功率因數修正器,國立臺北科技大學電機工程系電力電子產業研發碩士學位論文,民國一百零三年七月。
[41] 李耀辰,具有均流控制與寬輸入電壓之交錯式功率因數修正器,國立臺北科技大學電機工程系電力電子產業研發碩士學位論文,民國一百零五年七月。
[42] M. O’Loughlin, An interleaved PFC preregulator for high-power converters, Texas Instruments, pp. 1-14.
[43] Datasheet, Cores, Magnetic Powder, ARONLD magnetic LTD powder core division, 2003.
[44] Datasheet, TPH3205WS, Transphorm, Aug. 2016.
[45] F. Recht, Z. Huang, and Y. Wu, Characteristics of Transphorm GaN power switches, Transphorm.
[46] Power MOSFET Basics: Understanding gate charge and using it to assess switching performance, Vishay Siliconix.
[47] 林建億,以數位訊號處理器實現具有相移與零電壓切換之全橋轉換器,國立臺北科技大學電機工程系電力電子產業研發碩士學位論文,民國九十六年一月。
[48] Datasheet, STPSC10H065, ST, Feb. 2017.
[49] Datasheet, IPA65R125C7, Infineon, Oct. 2013.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top